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RL for Dialogue Systems

◉ In NLP, RL is mostly used in dialogues regarding its
interactive characteristic
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Type of Bots State Action Reward

Social Chatbots Chat history System Response # of turns maximized;
Intrinsic reward

InfoBots (interactive QA) User current 
question + Context

Answers to current 
question

Relevance of answer;
# of turns minimized

Task-Completion Bots User current input + 
Context

System dialogue 
act w/ slot value 
(or API calls)

Task success rate;
# of turns minimized



Dialogue manager: the core of determining next action

Dialogue Policy Optimization3



Dialogue Policy Optimization

◉ Often formulated as a Reinforcement Learning (RL) 
problem 
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U s e r

Reward R Observation OAction A

Environment
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Natural Language Generation Language Understanding

Dialogue Manager

Select the best action that maximizes the future reward



Issues of Dialogue Policy Learning

◉ Sample inefficient, hard to design reward function, local 
optima, unstable…  

◉ Real users are expensive, so we usually conduct rule-
based user simulators  

◉ Discrepancy between real users and simulators 
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Deep Dyna-Q

◉ discrepancy between real users and simulators → learn a 
user by real data

6

Simulator

Human 
Conversational Data

Policy 
Model Direct 

Reinforcement 
Learning

Acting

Imitation
Learning

Supervised
Learning

Policy 
Model

User
World 
Model

Real
Experience

Direct
Reinforcement 

Learning

World model 
learning

Planning
Acting

Human 
Conversational Data
Imitation
Learning

Supervised
Learning



World Model

◉ A trainable model using multi-task DNN to generate 
simulated experiences for planning  

◉ Input: current dialogue state and the last system action  
◉ Output: user response, reward, a binary signal for dialogue 

termination  
◉ Regression and classification tasks 
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h = tanh(Wh(s, a) + bh)
r = Wrh+ br o = softmax(Wah+ ba)

t = sigmoid(Wth+ bt)



Discriminative Deep Dyna-Q

◉ low-quality fake experience would potentially harm learning   
◉ learn a discriminator (classifier) to judge 
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Controlled Planning with Discriminator 

◉ Learning effectiveness depends on the quality of simulated 
experiences used in the planning stage  

◉ A discriminator is to differentiate between real and fake 
experiences and further pick the “realistic” simulated 
experiences  

◉ Same objective function of discriminator in GAN: 
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Ereal[logD(x)] + Esimu[log(1�D(G(.)))]



Iterative Policy Learning

◉ jointly optimizing the dialog agent and the user simulator by 
simulating dialogs

◉ let the agent and the user simulator to positively collaborate
to achieve the goal. 
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J(✓a, ✓u) = E[R] =
X

⇡✓a(aa|sa)⇡✓u(au|su)R
<latexit sha1_base64="pHqSVF3z7H5cnI7ehllLVVzx/Pk="></latexit>

r✓aJ(✓a, ✓u) = E[r✓a log⇡✓u(au|su)R]
<latexit sha1_base64="jEG1Cqm+WI/KYSujMT8AiD3iZ+M="></latexit>



Hierarchical Policy Learning

◉ Consider an important type of complex tasks, termed
composite task, which consists of a set of subtasks that 
need to be fulfilled collectively.

◉ For example, in order to make a travel plan, we need to 
book air tickets, reserve a hotel, rent a car, etc.

◉ The composite task is fulfilled after all its subtasks are 
completed collectively.
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Options over MDPs

◉ Two-level hierarchical process
◉ an option consists of three components: a set of states  

where the option can be initiated, an intra-option policy that 
selects primitive actions while the option is in control, and a 
termination condition that specifies when the option is  
completed.
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Hierarchical Policy Learning

◉ The intra-option is a conventional policy over primitive 
actions, we can consider an inter-option policy over 
sequences of options in much the same way  as  we  
consider the intra-option policy over sequences of actions
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Train whole dialogue systems in an end-to-end manner by RL

End-to-End Neural Dialogue
System14



End-to-End Task-Completion Neural 
Dialogue Systems

◉ Use the final reward to train the whole neural dialogue 
system by RL 

15



Open-Domain Dialogue Generation

◉ Unlike RL for task-oriented dialogue, a main challenge that 
E2E systems are facing is the lack of well-defined metrics 
for success

◉ the goal of chatbot is to provide interesting, diverse, and 
informative feedback that keeps users engaged 
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Open-Domain Dialogue Generation

◉ Let the agent model converse with a user model
◉ The objective is to maximize the expected total reward over 

the dialogues generated by the user simulator and the 
agent to be learned
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Open-Domain Dialogue Generation

◉ Formally, the objective is

◉ What could be included in the reward function?
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J(✓) = E[R(T1, T2, ..., TN )]

=
X

p(T1, T2, ..., TN )R(T1, T2, ..., TN )
<latexit sha1_base64="zUZPp4O7Fyqg8mUAOcY6bzQy51w="></latexit>



Reward

◉ Ease of answering: a turn generated by a machine should 
be easy to respond to. 

◉ measure the ease of answering a generated turn by using 
the negative log likelihood of responding to that utterance 
with a dull response.

◉ constructed a list of dull responses consisting 8 turns such 
as “ I have no idea”.
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Reward

◉ Information Flow: we  want  each  agent  to  contribute 
new information at each turn to keep the dialogue moving 
and avoid repetitive sequences.

◉ Penalizing semantic similarity between consecutive turns 
from the same agent
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Reward

◉ Semantic Coherence: we also need to measure the
adequacy of responses to avoid situations in which the 
generated replies are highly rewarded but are 
ungrammatical or not coherent. 

◉ Consider the mutual information between the action and 
previous turns
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Reward

◉ The final reward for action is a weighted sum of the 
rewards discussed above:
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Model-based reward function

Reward Function Learning23



Reward Function?

◉ In practice, designing an appropriate reward function is not 
always obvious, and substantial domain knowledge is 
needed.

◉ Q: How to rate a robot trying backflips?
◉ Q: If achieving success in a goal-oriented dialogue,

how much reward should we provide? 10? 30?
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Discriminator as Reward Provider

◉ A discriminator is to differentiate between real and fake 
experiences and further pick the “realistic” simulated 
experiences  

◉ Same objective function of discriminator in GAN: 
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Ereal[logD(x)] + Esimu[log(1�D(G(.)))]



◉ Monte Carlo (MC) search to approximate the state-action 
value

SeqGAN26
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