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© RL for Dialogue Systems

@ In NLP, RL is mostly used in dialogues regarding its
Interactive characteristic
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a Dialogue Policy Optimization

Dialogue manager: the core of determining next action



© Dialogue Policy Optimization

@ Often formulated as a Reinforcement Learning (RL)
problem
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© Issues of Dialogue Policy Learning

® Sample inefficient, hard to design reward function, local
optima, unstable...

@ Real users are expensive, so we usually conduct rule-
based user simulators

@ Discrepancy between real users and simulators



©® Deep Dyna-Q

@ discrepancy between real users and simulators — learn a
user by real data
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©® World Model

@ A trainable model using multi-task DNN to generate
simulated experiences for planning

@ Input: current dialogue state and the last system action

@ Output: user response, reward, a binary signal for dialogue
termination

@ Regression and classification tasks

h = tanh(W},(s,a) + by,) t = sigmoid(Wih + b;)
r=W,.h+b, o = softmax(W,h 4 )



©® Discriminative Deep Dyna-Q

@ low-quality fake experience would potentially harm learning
@ learn a discriminator (classifier) to judge
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© cControlled Planning with Discriminator

@ Learning effectiveness depends on the quality of simulated
experiences used in the planning stage

@ A discriminator is to differentiate between real and fake
experiences and further pick the “realistic” simulated
experiences

® Same objective function of discriminator in GAN:

Ereat[log D(x)] + Egimu|log(l — D(G(.)))]



@ Iterative Policy Learning

@ jointly optimizing the dialog agent and the user simulator by
simulating dialogs

@ let the agent and the user simulator to positively collaborate
to achieve the goal.
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@ Hierarchical Policy Learning

@ Consider an important type of complex tasks, termed
composite task, which consists of a set of subtasks that
need to be fulfilled collectively.

@ For example, in order to make a travel plan, we need to
book air tickets, reserve a hotel, rent a car, etc.

@ The composite task is fulfilled after all its subtasks are
completed collectively.



@ Options over MDPs

® Two-level hierarchical process

@ an option consists of three components: a set of states
where the option can be initiated, an intra-option policy that
selects primitive actions while the option is in control, and a
termination condition that specifies when the option is
completed.



@ Hierarchical Policy Learning

@ The intra-option is a conventional policy over primitive
actions, we can consider an inter-option policy over
sequences of options in much the same way as we
consider the intra-option policy over sequences of actions
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End-to-End Neural Dialogue

@ System

Train whole dialogue systems in an end-to-end manner by RL




@ Use the final reward to train the whole neural dialogue

system by RL
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@ Open-Domain Dialogue Generation

@ Unlike RL for task-oriented dialogue, a main challenge that
E2E systems are facing is the lack of well-defined metrics
for success

@ the goal of chatbot is to provide interesting, diverse, and
informative feedback that keeps users engaged



@ Open-Domain Dialogue Generation

@ Let the agent model converse with a user model

@ The objective is to maximize the expected total reward over
the dialogues generated by the user simulator and the
agent to be learned
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@ Open-Domain Dialogue Generation

@ Formally, the objective is

J(0) =E|R(Ty, T3, ...,TN)]
=Y p(T1,Ts, ... Ty)R(T1, Tp, ..., T)

@® What could be included in the reward function?



® Reward

@ Ease of answering: a turn generated by a machine should
be easy to respond to.

® measure the ease of answering a generated turn by using
the negative log likelihood of responding to that utterance
with a dull response.

@ constructed a list of dull responses consisting 8 turns such
as “ | have no idea”.

1 1
- § 1
r1 Ne L N. ngseq2seq(3|a') -



&) Reward

@ Information Flow: we want each agent to contribute
new information at each turn to keep the dialogue moving
and avoid repetitive sequences.

@ Penalizing semantic similarity between consecutive turns
from the same agent
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@ Reward

® Semantic Coherence: we also need to measure the
adequacy of responses to avoid situations in which the
generated replies are highly rewarded but are
ungrammatical or not coherent.

@® Consider the mutual information between the action and
previous turns

1 1
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@ Reward

@ The final reward for action is a weighted sum of the
rewards discussed above:

r(a, [pi, ¢i]) = A1r1 + Aare + Asrs



@ Reward Function Learning

Model-based reward function



@ Reward Function?

@ In practice, designing an appropriate reward function is not
always obvious, and substantial domain knowledge is
needed.

@ Q: How to rate a robot trying backflips?

@ Q: If achieving success in a goal-oriented dialogue,
how much reward should we provide? 10? 307



@ Discriminator as Reward Provider

@ A discriminator is to differentiate between real and fake
experiences and further pick the “realistic” simulated
experiences

® Same objective function of discriminator in GAN:

Ereat|log D(x)] + Egimau|log(1l — D(G(.)))]



@ SeqGAN

® Monte Carlo (MC) search to approximate the state-action
value
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