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Why Transformer?2



The Evolved Transformer

◉ Apply neural architecture search (NAS) on Transformer
architecture

◉ It also proved to be efficient at smaller sizes, achieving the 
same quality as the original ”big” Transformer with 37.6% 
less parameters and outperforming the Transformer by 0.7 
BLEU at a mobile-friendly model size of ∼7M parameters.
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The Evolved Transformer

◉ Google recently release a model “Meena” base on the ET.
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Though achieving great improvements…

◉ No Recurrent Inductive Bias: The Transformer trades the 
recurrent inductive bias of RNN’s for parallelizability. 
However, the recurrent inductive bias appears to be crucial 
for generalizing on different sequence modeling tasks of 
varying complexity. 

◉ For instance, when it is necessary to model the hierarchical 
structure of the input, or when the distribution of input 
length is different during training and inference, i.e. when 
good length generalization is needed. 
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No Recurrent Inductive Bias

◉ “The Importance of Being Recurrent for Modeling 
Hierarchical Structure”

◉ Transformer vs LSTM
◉ Using task like logical inference to study the ability of 

capturing the underlying hierarchical structure of sequential 
data.
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No Recurrent Inductive Bias

◉ The experiments showed that LSTMs are more robust and
generalize better.

◉ This does not imply that LSTMs should always be preferred 
over non-recurrent architectures.

◉ In fact, both FAN- and CNN-based networks have proved 
to perform comparably or better than LSTM-based ones on 
a very complex task like machine translation
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The Transformer Is Not Turing Complete

◉ While the Transformer executes a total number of 
operations that scales with the input size, the number of 
sequential operations is constant and independent of the 
input size, determined solely by the number of layers. 

◉ Assuming finite precision, this means that the Transformer 
cannot be computationally universal. 
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The Transformer Is Not Turing Complete

◉ An intuitive example are functions whose execution 
requires the sequential processing of each input element. 
In this case, for any given choice of depth T, one can 
construct an input sequence of length N > T that cannot be 
processed correctly by a Transformer.
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Lack of Conditional Computation

◉ The Transformer applies the same amount of computation 
to all inputs (as well as all parts of a single input). However, 
not all inputs need the same amount of computation and 
this can be conditioned on the complexity of the input.

◉ “I arrived at the bank after crossing the river.”
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Universal Transformers

◉ A Concurrent-Recurrent Sequence Model
◉ The Universal Transformer is an extension to the 

Transformer models which combines the parallelizability 
and global receptive field of the Transformer model with the 
recurrent inductive bias of RNNs.

◉ Recurrence in depth
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How Does the UT Work?14



Dynamic Halting

◉ modulates the number of computational steps needed to 
process each input symbol dynamically based on a scalar 
pondering value that is predicted by the model at each 
step.

◉ uses an Adaptive Computation Time (ACT) mechanism, 
which was originally proposed for RNNs, to enable 
conditional computation.
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Adaptive Computation Time

◉ RNN vs RNN with ACT
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UT with Dynamic Halting17



Notes

◉ weight sharing in depth leads 
to better performance of UTs 
(compared to the standard 
Transformer) on very small 
datasets and allows the UT to 
be a very data efficient model

◉ Transition functions can be
replaced
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Transformer-XL: Attentive Language 
Models Beyond a Fixed-Length Context

◉ The original Transformer: no recurrence 
◉ 2nd generation (Universal Transformer): recurrence in 

depth
◉ 3rd generation (Transformer-XL): recurrence in length
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Transformer for LM

◉ in language modeling, Transformers are currently 
implemented with a fixed-length context, i.e. a long text 
sequence is truncated into fixed-length segments of a few 
hundred characters, and each segment is processed 
separately.
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Transformer for LM

◉ This introduces two critical limitations: 
◉ The algorithm is not able to model dependencies that are 

longer than a fixed length. 
◉ The segments usually do not respect the sentence 

boundaries, resulting in context fragmentation which leads 
to inefficient optimization. 
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它不僅是一個能夠處理可變長度序列的模型，在多個任
務中刷新了當前的最好性能。



Transformer-XL:  
Segment-level Recurrence

◉ During training, the representations computed for the 
previous segment are fixed and cached to be reused as an 
extended context when the model processes the next new 
segment. 
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Relative Positional Encodings

◉ Naively applying segment-level recurrence does not work, 
however, because the positional encodings are not 
coherent when we reuse the previous segments.

◉ For example, consider an old segment with contextual 
positions [0, 1, 2, 3]. When a new segment is processed, 
we have positions [0, 1, 2, 3, 0, 1, 2, 3] for the two 
segments combined, where the semantics of each position 
id is incoherent through out the sequence.   

◉ parameterization to only encode the relative positional 
information based on content 
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Transformer-XL24



Transformer-XL

◉ Transformer-XL is up to 1,800+ times faster than a vanilla 
Transformer during evaluation on language modeling tasks, 
because no re-computation is needed.   

◉ Transformer-XL has better performance in perplexity (more 
accurate at predicting a sample) on long sequences 
because of long-term dependency modeling, and also on 
short sequences by resolving the context fragmentation 
problem. 
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Reformer: The Efficient Transformer 

◉ extending Transformer to even larger context windows runs 
into limitations. The power of Transformer comes from 
attention, the process by which it considers all possible 
pairs of words within the context window to understand the 
connections between them.

◉ So, in the case of a text of 100K words, this would require 
assessment of 100K x 100K word pairs, or 10 billion pairs 
for each step, which is impractical. 
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Reformer: The Efficient Transformer 

◉ Since softmax is dominated by the largest elements, for 
each query qi we only need to focus on the keys in K that 
are closest to qi. For example, if K is of length 64K, for each
qi we could only consider a small subset of, say, the 32 or
64 closest keys. 

◉ That is much more efficient, but how can we find the 
nearest neighbors among the keys?
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Attention(Q,K, V ) = softmax(
QKT

p
dk

)V
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Locality Sensitive Hashing (LSH)

◉ The problem of finding nearest neighbors quickly in high-
dimensional spaces can be solved by locality-sensitive 
hashing (LSH). 

◉ A hashing scheme that assigns each vector x to a hash
h(x) is called locality-sensitive if nearby vectors get the 
same hash with high probability and distant ones do not.
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LSH Attention

◉ Attention is then applied within these much shorter chunks 
(and their adjoining neighbors to cover the overflow), 
greatly reducing the computational load. 
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The Memory Problem

◉ While LSH solves the problem with attention, there is still a 
memory issue. A single layer of a network often requires up 
to a few GB of memory and usually fits on a single GPU, so 
even a model with long sequences could be executed if it 
only had one layer. 

◉ But when training a multi-layer model with gradient descent,
activations from each layer need to be saved for use in the 
backward pass. A typical Transformer model has a dozen 
or more layers, so memory quickly runs out if used to cache 
values from each of those layers.
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Reversible Layer

◉ “The Reversible Residual Network: Backpropagation 
Without Storing Activations”

◉ recompute the input of each layer on-demand during back-
propagation, rather than storing it in memory. 
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Reversible Layer

◉ recompute the input of each layer on-demand during back-
propagation, rather than storing it in memory. 
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y1 = x1 + F(x2)

y2 = x2 + G(y1)
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x2 = y2 � G(y1)
x1 = y1 � F(x2)
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Reversible Layer

◉ Reversible Transformer: F becomes an attention layer
while G becomes the feed-forward layer.
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Reformer: The Efficient Transformer 

◉ combines the modeling capacity of a Transformer with an 
architecture that can be executed efficiently on long 
sequences and with small memory use even for models 
with a large number of layers.

◉ The Attention Problem: Locality-Sensitive Hashing
◉ The Memory Problem: Reversible Layer
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