
More on Transformers

Applied Deep Learning

April 14th, 2020 http://adl.miulab.tw

http://adl.miulab.tw/

Why Transformer?2

The Evolved Transformer

◉ Apply neural architecture search (NAS) on Transformer
architecture

◉ It also proved to be efficient at smaller sizes, achieving the
same quality as the original ”big” Transformer with 37.6%
less parameters and outperforming the Transformer by 0.7
BLEU at a mobile-friendly model size of ∼7M parameters.

3

The Evolved Transformer4

The Evolved Transformer5

The Evolved Transformer

◉ Google recently release a model “Meena” base on the ET.

6

Though achieving great improvements…

◉ No Recurrent Inductive Bias: The Transformer trades the
recurrent inductive bias of RNN’s for parallelizability.
However, the recurrent inductive bias appears to be crucial
for generalizing on different sequence modeling tasks of
varying complexity.

◉ For instance, when it is necessary to model the hierarchical
structure of the input, or when the distribution of input
length is different during training and inference, i.e. when
good length generalization is needed.

7

No Recurrent Inductive Bias

◉ “The Importance of Being Recurrent for Modeling
Hierarchical Structure”

◉ Transformer vs LSTM
◉ Using task like logical inference to study the ability of

capturing the underlying hierarchical structure of sequential
data.

8

No Recurrent Inductive Bias

◉ The experiments showed that LSTMs are more robust and
generalize better.

◉ This does not imply that LSTMs should always be preferred
over non-recurrent architectures.

◉ In fact, both FAN- and CNN-based networks have proved
to perform comparably or better than LSTM-based ones on
a very complex task like machine translation

9

The Transformer Is Not Turing Complete

◉ While the Transformer executes a total number of
operations that scales with the input size, the number of
sequential operations is constant and independent of the
input size, determined solely by the number of layers.

◉ Assuming finite precision, this means that the Transformer
cannot be computationally universal.

10

The Transformer Is Not Turing Complete

◉ An intuitive example are functions whose execution
requires the sequential processing of each input element.
In this case, for any given choice of depth T, one can
construct an input sequence of length N > T that cannot be
processed correctly by a Transformer.

11

Lack of Conditional Computation

◉ The Transformer applies the same amount of computation
to all inputs (as well as all parts of a single input). However,
not all inputs need the same amount of computation and
this can be conditioned on the complexity of the input.

◉ “I arrived at the bank after crossing the river.”

12

Universal Transformers

◉ A Concurrent-Recurrent Sequence Model
◉ The Universal Transformer is an extension to the

Transformer models which combines the parallelizability
and global receptive field of the Transformer model with the
recurrent inductive bias of RNNs.

◉ Recurrence in depth

13

How Does the UT Work?14

Dynamic Halting

◉ modulates the number of computational steps needed to
process each input symbol dynamically based on a scalar
pondering value that is predicted by the model at each
step.

◉ uses an Adaptive Computation Time (ACT) mechanism,
which was originally proposed for RNNs, to enable
conditional computation.

15

Adaptive Computation Time

◉ RNN vs RNN with ACT

16

UT with Dynamic Halting17

Notes

◉ weight sharing in depth leads
to better performance of UTs
(compared to the standard
Transformer) on very small
datasets and allows the UT to
be a very data efficient model

◉ Transition functions can be
replaced

18

Transformer-XL: Attentive Language
Models Beyond a Fixed-Length Context

◉ The original Transformer: no recurrence
◉ 2nd generation (Universal Transformer): recurrence in

depth
◉ 3rd generation (Transformer-XL): recurrence in length

19

Transformer for LM

◉ in language modeling, Transformers are currently
implemented with a fixed-length context, i.e. a long text
sequence is truncated into fixed-length segments of a few
hundred characters, and each segment is processed
separately.

20

Transformer for LM

◉ This introduces two critical limitations:
◉ The algorithm is not able to model dependencies that are

longer than a fixed length.
◉ The segments usually do not respect the sentence

boundaries, resulting in context fragmentation which leads
to inefficient optimization.

21

它不僅是一個能夠處理可變長度序列的模型，在多個任
務中刷新了當前的最好性能。

Transformer-XL:
Segment-level Recurrence

◉ During training, the representations computed for the
previous segment are fixed and cached to be reused as an
extended context when the model processes the next new
segment.

22

Relative Positional Encodings

◉ Naively applying segment-level recurrence does not work,
however, because the positional encodings are not
coherent when we reuse the previous segments.

◉ For example, consider an old segment with contextual
positions [0, 1, 2, 3]. When a new segment is processed,
we have positions [0, 1, 2, 3, 0, 1, 2, 3] for the two
segments combined, where the semantics of each position
id is incoherent through out the sequence.

◉ parameterization to only encode the relative positional
information based on content

23

Transformer-XL24

Transformer-XL

◉ Transformer-XL is up to 1,800+ times faster than a vanilla
Transformer during evaluation on language modeling tasks,
because no re-computation is needed.

◉ Transformer-XL has better performance in perplexity (more
accurate at predicting a sample) on long sequences
because of long-term dependency modeling, and also on
short sequences by resolving the context fragmentation
problem.

25

Reformer: The Efficient Transformer

◉ extending Transformer to even larger context windows runs
into limitations. The power of Transformer comes from
attention, the process by which it considers all possible
pairs of words within the context window to understand the
connections between them.

◉ So, in the case of a text of 100K words, this would require
assessment of 100K x 100K word pairs, or 10 billion pairs
for each step, which is impractical.

26

Reformer: The Efficient Transformer

◉ Since softmax is dominated by the largest elements, for
each query qi we only need to focus on the keys in K that
are closest to qi. For example, if K is of length 64K, for each
qi we could only consider a small subset of, say, the 32 or
64 closest keys.

◉ That is much more efficient, but how can we find the
nearest neighbors among the keys?

27

Attention(Q,K, V) = softmax(
QKT

p
dk

)V
<latexit sha1_base64="4PTK4EZ0e9c663c9Odd55W3+tiY=">AAACL3icbVDLSgMxFM34rPVVdekmWIQKUmZU0I1QFUTopoW2Cp1aMmlGQ5OZMbkjlmH+yI2/0o2IIm79CzO1gq8DgcM593JzjhcJrsG2n6yJyanpmdncXH5+YXFpubCy2tJhrChr0lCE6sIjmgkesCZwEOwiUoxIT7Bzr3+S+ee3TGkeBg0YRKwjyVXAfU4JGKlbOHUlgWslkyMAFmRaWqpvV7dbW/gQf3k69EGSu7Tk+orQpF69bKSJq28UJL1uP023Wt1C0S7bI+C/xBmTIhqj1i0M3V5IY2luUkG0bjt2BJ2EKOBUsDTvxppFhPbJFWsbGhDJdCcZ5U3xplF62A+VeQHgkfp9IyFS64H0zGSWQP/2MvE/rx2Df9BJeBDFpgz6eciPBYYQZ+XhHleMghgYQqji5q+YXhPTCZiK86YE53fkv6S1U3Z2yzv1vWLleFxHDq2jDVRCDtpHFXSGaqiJKLpHQ/SMXqwH69F6td4+Ryes8c4a+gHr/QO6Jqoe</latexit>

Locality Sensitive Hashing (LSH)

◉ The problem of finding nearest neighbors quickly in high-
dimensional spaces can be solved by locality-sensitive
hashing (LSH).

◉ A hashing scheme that assigns each vector x to a hash
h(x) is called locality-sensitive if nearby vectors get the
same hash with high probability and distant ones do not.

28

LSH Attention

◉ Attention is then applied within these much shorter chunks
(and their adjoining neighbors to cover the overflow),
greatly reducing the computational load.

29

The Memory Problem

◉ While LSH solves the problem with attention, there is still a
memory issue. A single layer of a network often requires up
to a few GB of memory and usually fits on a single GPU, so
even a model with long sequences could be executed if it
only had one layer.

◉ But when training a multi-layer model with gradient descent,
activations from each layer need to be saved for use in the
backward pass. A typical Transformer model has a dozen
or more layers, so memory quickly runs out if used to cache
values from each of those layers.

30

Reversible Layer

◉ “The Reversible Residual Network: Backpropagation
Without Storing Activations”

◉ recompute the input of each layer on-demand during back-
propagation, rather than storing it in memory.

31

Reversible Layer

◉ recompute the input of each layer on-demand during back-
propagation, rather than storing it in memory.

32

y1 = x1 + F(x2)

y2 = x2 + G(y1)
<latexit sha1_base64="ITK1AfDsoKl2RgjMLQBOS8lw6kY=">AAACKHicbVDLSsNAFJ34rPUVdelmsCgtQkmioBuxKKjLCvYBTQiT6bQdOnkwM5GG0M9x46+4EVGkW7/ESdtFbb0wzOHcc7j3Hi9iVEjDGGlLyyura+u5jfzm1vbOrr63XxdhzDGp4ZCFvOkhQRgNSE1SyUgz4gT5HiMNr3+b9RvPhAsaBk8yiYjjo25AOxQjqShXv05cE55cwYH6TqHtI9nDiKV3w+LAtUrQtvOJa00E1qzgflhUzhJ09YJRNsYFF4E5BQUwraqrf9jtEMc+CSRmSIiWaUTSSRGXFDMyzNuxIBHCfdQlLQUD5BPhpONDh/BYMW3YCbl6gYRjdtaRIl+IxPeUMltUzPcy8r9eK5adSyelQRRLEuDJoE7MoAxhlhpsU06wZIkCCHOqdoW4hzjCUmWbVyGY8ycvgrpVNs/K1uN5oXIzjSMHDsERKAITXIAKeABVUAMYvIA38Am+tFftXfvWRhPpkjb1HIA/pf38AordogQ=</latexit>

x2 = y2 � G(y1)
x1 = y1 � F(x2)

<latexit sha1_base64="YvejNzihKw6Ody81DsIh/pWRSXE=">AAACKHicbVDLSgMxFM34rONr1KWbYFHahWWmCroRi4K6rGAf0ClDJk3b0ExmSDLSYejnuPFX3Igo0q1fYvpY1NYLIYdzz+Hee/yIUalse2gsLa+srq1nNszNre2dXWtvvyrDWGBSwSELRd1HkjDKSUVRxUg9EgQFPiM1v3c76teeiZA05E8qiUgzQB1O2xQjpSnPuu57RXhyBRP9nUI3QKqLEUvvB7nEc/LQdc2+50wEzqzgbpDTzjz0rKxdsMcFF4EzBVkwrbJnfbitEMcB4QozJGXDsSPVTJFQFDMyMN1YkgjhHuqQhoYcBUQ20/GhA3ismRZsh0I/ruCYnXWkKJAyCXytHC0q53sj8r9eI1bty2ZKeRQrwvFkUDtmUIVwlBpsUUGwYokGCAuqd4W4iwTCSmdr6hCc+ZMXQbVYcM4KxcfzbOlmGkcGHIIjkAMOuAAl8ADKoAIweAFv4BN8Ga/Gu/FtDCfSJWPqOQB/yvj5BZHMogg=</latexit>

Reversible Layer

◉ Reversible Transformer: F becomes an attention layer
while G becomes the feed-forward layer.

33

Reformer: The Efficient Transformer

◉ combines the modeling capacity of a Transformer with an
architecture that can be executed efficiently on long
sequences and with small memory use even for models
with a large number of layers.

◉ The Attention Problem: Locality-Sensitive Hashing
◉ The Memory Problem: Reversible Layer

34

References

◉ https://ai.googleblog.com/2020/01/towards-conversational-
agent-that-can.html

◉ https://arxiv.org/abs/1901.11117
◉ https://arxiv.org/pdf/1803.03585.pdf
◉ https://mostafadehghani.com/2019/05/05/universal-

transformers/
◉ https://arxiv.org/pdf/1807.03819.pdf
◉ https://arxiv.org/pdf/1603.08983.pdf
◉ https://medium.com/@moocaholic/adaptive-computation-

time-act-in-neural-networks-part-1-2a28484b53df

35

https://ai.googleblog.com/2020/01/towards-conversational-agent-that-can.html
https://arxiv.org/abs/1901.11117
https://arxiv.org/pdf/1803.03585.pdf
https://mostafadehghani.com/2019/05/05/universal-transformers/
https://arxiv.org/pdf/1807.03819.pdf
https://arxiv.org/pdf/1603.08983.pdf
https://medium.com/@moocaholic/adaptive-computation-time-act-in-neural-networks-part-1-2a28484b53df

References

◉ https://ai.googleblog.com/2020/01/towards-conversational-
agent-that-can.html

◉ https://ai.googleblog.com/2019/01/transformer-xl-
unleashing-potential-of.html

◉ https://arxiv.org/pdf/2001.04451.pdf
◉ https://arxiv.org/pdf/1707.04585.pdf

36

https://ai.googleblog.com/2020/01/towards-conversational-agent-that-can.html
https://ai.googleblog.com/2019/01/transformer-xl-unleashing-potential-of.html
https://arxiv.org/pdf/2001.04451.pdf
https://arxiv.org/pdf/1707.04585.pdf

