Applied Deep Learning

More on Embeddings

March 31st, 2020 http://adl.miulab.tw

Handling Out-of-Vocabulary

- One of the main problems of using pre-trained word embeddings is that they are unable to deal with out-ofvocabulary (OOV) words, i.e. words that have not been seen during training.
- Typically, such words are set to the UNK token and are assigned the same vector, which is an ineffective choice if the number of OOV words is large.

Below Words

Subwords and characters

Subword Embeddings

- separating unseen or rare words into common subwords, potentially address OOV issue
- "AppleCare" = "Apple" + "Care", "iPhone11" = "iPhone" + "11"

Why Subwords?

- "台灣大學生喜歡深度學習"
- suboptimal word segmentation system
- ambiguity in word segmentation: "深度學習" or "深度" "學習"
- informal spelling: "So gooooooood.", "lolllllllll"

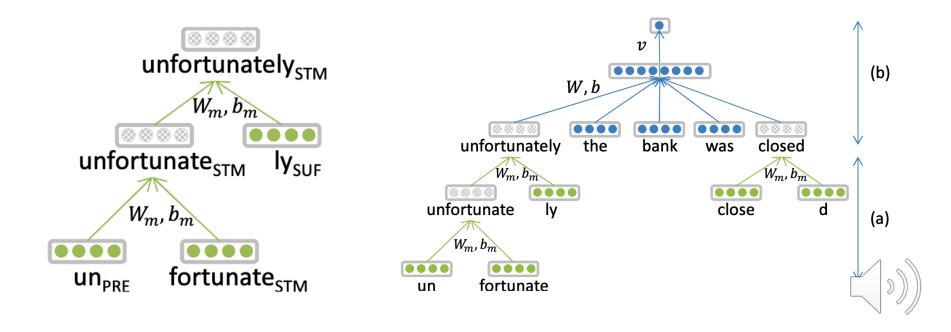
6

Subword Embeddings

- Possibility of leveraging morphological information
- In speech, we have phonemes; in language, we have morphemes.
- Morphemes (語素): smallest semantic units
- -s: noun plural, -ed: verb simple past tense, pre-, un-...

Subword Embeddings

Morphological Recursive Neural Network

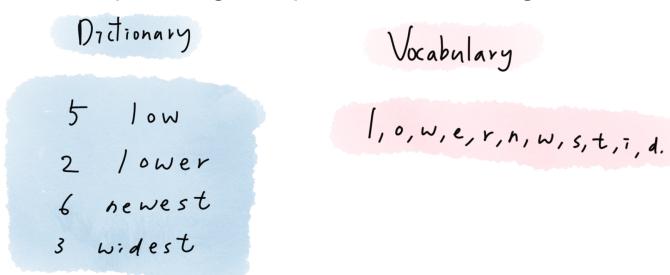


B How to Decide Subwords?

- by simple n-gram: Apple = [App, ppl, ple]
- Byte Pair Encoding: an algorithm to build the vocabulary

- Originally a compression algorithm: most frequent byte pair
 → a new byte.
- Used as a word segmentation algorithm
- Start with a unigram vocabulary of all (Unicode) characters in data
- Most frequent ngram pairs
 → a new ngram

- Start with a unigram vocabulary of all (Unicode) characters in data
- Most frequent ngram pairs
 → a new ngram



- Start with a unigram vocabulary of all (Unicode) characters in data
- Most frequent ngram pairs
 → a new ngram

Vocabulary

1,0,w,e,r,n,w,s,t,i,d.

tes

Add "es" with frequency (6+3)

- Start with a unigram vocabulary of all (Unicode) characters in data
- Most frequent ngram pairs
 → a new ngram

```
Dictionary

Vocabulary

I, o, w, e, r, n, w, s, t, i, d, es

2 / ower

6 newest

Add "est" with frequency (6+3)

3 widest
```

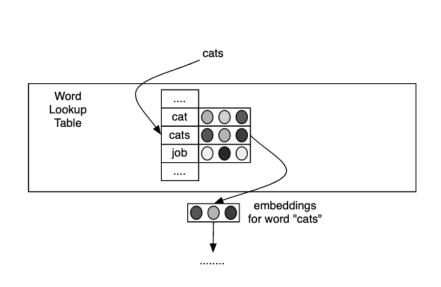

- Have a target vocabulary size and stop when you reach it
- Automatically decides vocab for system

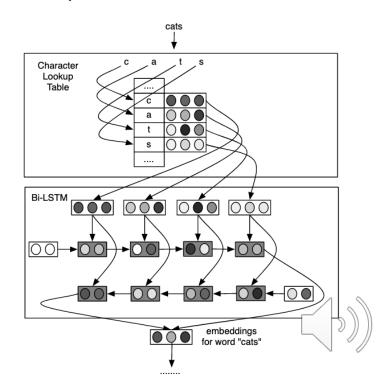
Character-Level Embeddings

- modeling word-level representation by character-level information
- completely solve OOV problem
- dynamically infer representation

Character-Level Embeddings

compositional character to word (C2W) model





16 MIMICK

- Optimizing towards pretrained embeddings
- no need to access the originating corpus

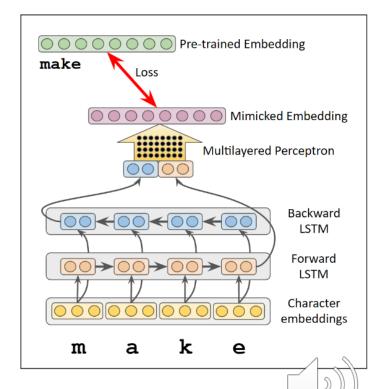


Figure 1: MIMICK model archite ure,

FastText

- An extension of the word2vec skip-gram model with character n-grams
- Represent word as char n-grams augmented with boundary symbols and as whole word: Apple = [<Ap, App, ppl, ple, le>, Apple]
- Prefix, suffixes and whole words are special
- supervised objective: text classification

18

Beyond Words

Sentences and documents

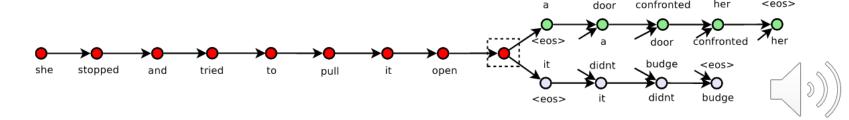
Sentence/Document Embedding

- How to extend to sentence/document-level?
- simply averaging word embeddings, inferring by trained models, ... etc.
- training objective?

Skip-Thought

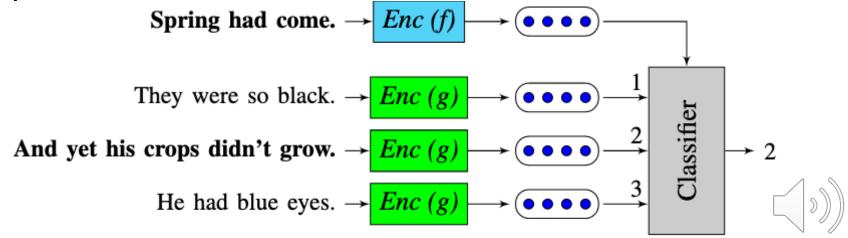
- extend skip-gram concept to sentence-level
- inspired by the distributional hypothesis: sentences that have similar surrounding context are likely to be both semantically and syntactically similar

$$\sum_{t} \log P(w_{i+1}^{t} | w_{i+1}^{< t}, \mathbf{h}_{i}) + \sum_{t} \log P(w_{i-1}^{t} | w_{i-1}^{< t}, \mathbf{h}_{i})$$



Quick-Thought

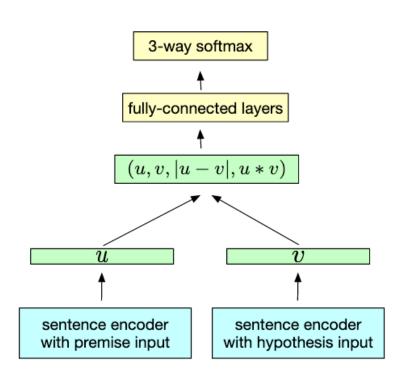
- change the objective to classification problem
- the model can choose to ignore aspects of the sentence that are irrelevant in constructing a semantic embedding space

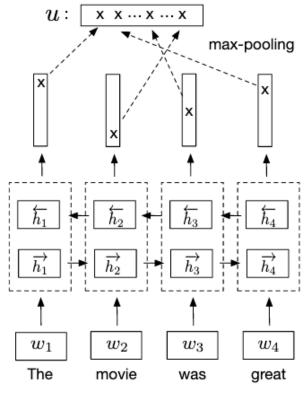


22 InferSent

- trained on natural language inference (NLI) task
- NLI is the task of determining whether a "hypothesis" is true (entailment), false (contradiction), or undetermined (neutral) given a "premise".

InferSent





References

- https://www.aclweb.org/anthology/W13-3512.pdf
- http://web.stanford.edu/class/cs224n/slides/cs224n-2019lecture12-subwords.pdf
- http://www.aclweb.org/anthology/D15-1176
- https://arxiv.org/pdf/1508.07909.pdf
- https://arxiv.org/pdf/1707.06961.pdf
- https://github.com/Separius/awesome-sentence-embedding
- https://openreview.net/pdf?id=rJvJXZb0W
- https://arxiv.org/pdf/1607.01759.pdf

25 References

https://arxiv.org/pdf/1705.02364.pdf