Applied Deep Learning

Practical Tips
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© Mini-Batch Training



© Feature Scaling

@® Idea: make sure features are on the same scale
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©® Feature Scaling

@ for each dimension,
compute mean and
standard deviation |-

!
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® the means of normalized '-|-.-

feature vectors are all O
and the variances are all 1




© Hidden States as Features

@ statistics of hidden states keep changing during training
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©® Internal Covariate Shift
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Q Batch Normalization




Q Batch Normalization
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@ Batch Normalization

@ learnable parameters y and B to rescale and reshift
distribution to preserve model capacity

@ do not have “batch” in testing phase

@ |deal solution: computing mean and variance based on the
whole training set

@ practical solution: computing moving average of mean and
variance of batches after convergence



@ Closer Look

@ Interval Covariate Shift?
@ usually apply before activation function

@ avoid exploding/vanishing gradients, especially for sigmoid

and tanh activation functions - |
@ batch size should be large ==
@ not suitable for dynamic structure 0‘5/
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@ Closer Look

@ Unsensitive to weights
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{2 Layer Normalization

@® can be used in (1) small batch scenario, even a single data
sample and (2) dynamic network structures like RNN
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@ More Kinds of Normalization

® Weight Normalization
@ Instance Normalization
@ Group Normalization
@ Spectral Normalization



@ How big is your batch size?

@ Intuitive idea: my GPU memory is enough — increase
the batch size

® ...Is it correct?
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Yann LeCun

“, @ylecun

Training with large minibatches is bad for your health.
More importantly, it's bad for your test error.

Friends dont let friends use minibatches larger than 32.
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@ How big is your batch size?

® The paper titled “Revisiting Small Batch Training for Deep
Neural Networks”

@ Quote from the paper: “In all cases the best results have
been obtained with batch sizes m= 32 or smaller, often as
small as m= 2 or m= 4. With BN and larger datasets, larger
batch sizes can be useful, up to batch size m= 32 or m= 64.”



@ Learning Rate

@ Intuitive/simple idea: reduce the learning rate by some

factor every few epochs.
At the beginning, we are far from the destination, so use a larger
learning rate
After several epochs, as we get closer to the destination, reduce the
learning rate

@ Better idea: give different parameters different learning

rates
Adaptive optimizers: Adagrad, RMSprop, Adam etc.



G Generalization

To Prevent Overfitting



@ Early Stopping

® Q: how many epochs should we train the models?
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@ Weight Decay

® Smaller weights are preferred. Why?
® (x,y)vs (x',y) wherex' =x+¢

® z=w-x

@z =w-x'=w-(x+e)=z4+w-¢

@ To minimize the effect of noise, we want weights close to
Zero.



(20 Regularization

@ Add a weight constraint term into the objective

L'=L+ L.(w)

@ By minimizing the loss, the weights will become smaller.



@ L1 Regularization

N
Ly(w) =AY |wi
i=1

@ feature selection/parameter sparsity




@ L2 Regularization

N
2
Ly.(w) =\ E W;
, L, (W)
1=1 ?
@ "One should always try L2 first.”
@ encourage all weights to be small %VM-.JW



https://www.quora.com/What-is-the-difference-between-L1-and-L2-regularization-How-does-it-solve-the-problem-of-overfitting-Which-regularizer-to-use-and-when/answer/Xavier-Amatriain

@ Dropout

@ In each iteration of training, each neuron has p% probability

to dropout
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@ Dropout

@ In each iteration of training, each neuron has p% probability
to dropout



@ Dropout

@ For each iteration, we resample the dropout neurons
@ Using a new network for training



@ Dropout

® When testing, no dropout and all the weights times (100-p)%

® Why?
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@ Dropout

@® Ensemble
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Average the results

Train a bunch of networks



@ Dropout

@ depress the capacity = unleash the potential
@ your teammate is a free rider - you need to work harder
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