
INVESTIGATING LINGUISTIC PATTERN ORDERING
IN HIERARCHICAL NATURAL LANGUAGE GENERATION

Shang-Yu Su and Yun-Nung Chen

National Taiwan University, Taipei, Taiwan
f05921117@ntu.edu.tw y.v.chen@ieee.org

ABSTRACT
Natural language generation (NLG) is a critical component
in spoken dialogue system, which can be divided into two
phases: (1) sentence planning: deciding the overall sentence
structure, (2) surface realization: determining specific word
forms and flattening the sentence structure into a string. With
the rise of deep learning, most modern NLG models are based
on a sequence-to-sequence (seq2seq) model, which basically
contains an encoder-decoder structure; these NLG models
generate sentences from scratch by jointly optimizing sen-
tence planning and surface realization. However, such simple
encoder-decoder architecture usually fail to generate com-
plex and long sentences, because the decoder has difficulty
learning all grammar and diction knowledge well. This pa-
per introduces an NLG model with a hierarchical attentional
decoder, where the hierarchy focuses on leveraging linguistic
knowledge in a specific order. The experiments show that
the proposed method significantly outperforms the traditional
seq2seq model with a smaller model size, and the design of
the hierarchical attentional decoder can be applied to various
NLG systems. Furthermore, different generation strategies
based on linguistic patterns are investigated and analyzed in
order to guide future NLG research work.1

Index Terms— Natural language generation, spoken dia-
logue systems, linguistic patterns

1. INTRODUCTION

Spoken dialogue systems that can help users to solve complex
tasks have become an emerging research topic in artificial in-
telligence and natural language processing areas [1, 2, 3, 4].
With a well-designed dialogue system as an intelligent per-
sonal assistant, people can accomplish certain tasks more eas-
ily via natural language interactions. Today, there are several
virtual intelligent assistants, such as Apple’s Siri, Google’s
Home, Microsoft’s Cortana, and Amazon’s Alexa, in the mar-
ket. A typical dialogue system pipeline can be divided into
several parts: a recognized result of a user’s speech input is
fed into a natural language understanding module (NLU) to

1The source code is available at https://github.com/MiuLab/
HNLG.

classify the domain along with domain-specific intents and
fill in a set of slots to form a semantic frame [5, 6, 7]. A di-
alogue state tracking (DST) module predicts the current state
of the dialogue by means of the semantic frames extracted
from multi-turn conversations. Then the dialogue policy de-
termines the system action for the next step given the cur-
rent dialogue state. Finally the semantic frame of the system
action is then fed into a natural language generation (NLG)
module to construct a response utterance to the user [8, 9].

As a key component to a dialogue system, the goal of
NLG is to generate natural language sentences given the se-
mantics provided by the dialogue manager to feedback to
users. As the endpoint of interacting with users, the quality
of generated sentences is crucial for better user experience.
The common and mostly adopted method is the rule-based
(or template-based) method [10], which can ensure the natu-
ral language quality and fluency. In spite of robustness and
adequacy of the rule-based methods, frequent repetition of
identical, tedious output makes talking to a template-based
machine unsatisfactory. Furthermore, scalability is an issue,
because designing sophisticated rules for a specific domain is
time-consuming [11].

Recurrent neural network-based language model (RNNLM)
have demonstrated the capability of modeling long-term de-
pendency in sequence prediction by leveraging recurrent
structures [12, 13]. Previous work proposed an RNNLM-
based NLG that can be trained on any corpus of dialogue act-
utterance pairs without hand-crafted features and any seman-
tic alignment [14]. The following work based on sequence-
to-sequence (seq2seq) further obtained better performance by
employing encoder-decoder structure with linguistic knowl-
edge such as syntax trees [15, 16, 17, 18]. However, due
to grammar complexity and lack of diction knowledge, it is
still challenging to generate long and complex sentences by a
simple encoder-decoder structure.

To address the issue, previous work attempted separating
decoding jobs in a decoding hierarchy, which is constructed
in terms of part-of-speech (POS) tags [9]. The original sin-
gle decoding process is separated into a multi-level decoding
hierarchy, where each decoding layer generates words associ-
ated with a specific POS set. This paper extends the idea to
a more flexible design by incorporating attention mechanisms

Bidirectional GRU Encoder

Italian priceRangename ……

name[Midsummer House], food[Italian],
priceRange[moderate], near[All Bar One]

Input Semantics 𝒙 = {𝑤1, … , 𝑤𝑇}

[… 1, 0, 0, 1, 0, …]

Semantic 1-hot Representation
All Bar One place it Midsummer House

All Bar One is priced place it is called Midsummer House

All Bar One is moderately priced Italian place it is called
Midsummer House

Near All Bar One is a moderately priced Italian place it is called
Midsummer House

Attentional Hierarchical Decoder

Attentional Hierarchical Decoder

1. Scheduled Sampling
- Inner-Layer Scheduled Sampling
- Inter-Layer Scheduled Sampling

2. Curriculum Learning
3. Repeat-input
4. Attention Mechanism

4. Others

3. ADJ + ADV

2. VERB

1. NOUN +
PROPN + PRON

GRU Decoder

Attentional
Model

GRU Decoder

Attentional
Model

GRU Decoder

Attentional
Model

GRU Decoder

Attentional
Model

Fig. 1. The illustration of the proposed semantically conditioned NLG model. The hierarchical decoder contains four decoder
layer, each is only responsible for learning to insert words of a specific set of POS tags into the sequence.

into the decoding hierarchy. Because prior work designs the
decoding hierarchy in a hand-crafted manner based on a sub-
jective intuition [9], in this work, we experiment on various
generating hierarchies to investigate the importance of lin-
guistic pattern ordering in hierarchical language generation.
The experiments show that our proposed method outperforms
the classic seq2seq model with a smaller model size; in addi-
tion, the concept of the hierarchical decoder is proven general
enough for various generating hierarchies. Furthermore, this
paper also provides the design guidelines and insights of de-
signing the decoding hierarchy.

2. HIERARCHICAL NATURAL LANGUAGE
GENERATION (HNLG)

The framework of the proposed hierarchical NLG model is
illustrated in Figure 1, where the model architecture is based
on an encoder-decoder (seq2seq) structure with attentional hi-
erarchical decoders [15, 16]. In the encoder-decoder archi-
tecture, a typical generation process includes encoding and
decoding phases: First, a given semantic representation se-
quence x = {wt}T1 is fed into a RNN-based encoder to cap-
ture the temporal dependency and project the input to a la-
tent feature space; the semantic representation sequence is
also encoded into an one-hot representation as the initial state

of the encoder in order to maintain the temporal-independent
condition as shown in the left part of Figure 1. The recurrent
unit of the encoder is bidirectional gated recurrent unit (GRU)
[15],

henc = BiGRU(x). (1)

Then the encoded semantic vector, henc, is fed into an RNN-
based decoder as the initial state to decode word sequences,
as shown in the right part of Figure 1.

2.1. Attentional Hierarchical Decoder

In spite of the intuitive and elegant design of the seq2seq
model, it is still difficult to generate complex and decent se-
quences by a simple encoder-decoder structure, because a sin-
gle decoder is not capable of learning all diction, grammar,
and other related linguistic knowledge at the same time. Some
prior work applied additional techniques such as reranker and
beam-search to select a better result among multiple gener-
ated sequences [14, 17]. However, it is still an unsolved issue
to the NLG community.

Therefore, we propose a hierarchical decoder to address
the above issue, where the core idea is to allow the decod-
ing layers to focus on learning different types of patterns in-
stead of learning all relevant knowledge together. The hierar-
chical decoder is composed of several decoding layers, each

of which is only responsible for learning a portion of the re-
quired knowledge. Namely, the linguistic knowledge can be
incorporated into the decoding process and divided into sev-
eral subsets.

We use part-of-speech (POS) tags as the additional lin-
guistic features to construct the decoding hierarchy in this
paper, where POS tags of the words in the target sentence
are separated into several subsets, and each layer is respon-
sible for decoding the words associated with a specific set
of POS patterns. An example is shown in the right part of
Figure 1, where the first layer at the bottom is in charge of
decoding nouns, pronouns, and proper nouns, and the sec-
ond layer is for verbs, and so on. The prior work manually
designed the decoding hierarchy by considering the subjec-
tive intuition about how children learn to speak [9]: infants
first learn to say keywords, which are often nouns. For ex-
ample, when an infant says “Daddy, toilet.”, it actually means
“Daddy, I want to go to the toilet.”. Along with the growth
of the age, children learn more grammars and vocabulary and
then start adding verbs to the sentences, further adding ad-
verbs, and so on. However, the hand-crafted linguistic order
may not be optimal, so we experiment and analyze the model
on various generating linguistic hierarchies to deeply investi-
gate the effect of linguistic pattern ordering.

In the hierarchical decoder, the initial state of each GRU-
based decoding layer i is the extracted feature henc from the
encoder, and the input at every step is the last predicted to-
ken yit−1 concatenated with the output from the previous layer
yi−1
t ,

hi
t, o

i
t = GRUi

dec(y
i
t−1, y

i−1
t | henc,hi

t−1), (2)

yit = argmax(ot), (3)

where hi
t is the t-th hidden state of the i-th GRU decoding

layer and yit is the t-th outputted word in the i-th layer. We use
the cross entropy loss as our training objective for optimiza-
tion, where the difference between the predicted distribution
and target distribution is minimized. To facilitate training and
improve the performance, several strategies including sched-
uled sampling, a repeat input mechanism, curriculum learn-
ing, and an attention mechanism are utilized.

2.2. Scheduled Sampling

Teacher forcing [19] is a strategy for training RNN that uses
model output from a prior time step as an input, and it works
by using the expected output at the current time step ŷt as
the input at the next time step, rather than the output gener-
ated by the network. The teacher forcing techniques can also
be triggered only with a certain probability, which is known
as the scheduled sampling approach [20]. We adopt sched-
uled sampling methods in our experiments. In the proposed
framework, an input of a decoder contains not only the output
from the last step but one from the last decoding layer. There-

fore, we design two types of scheduled sampling approaches
– inner-layer and inter-layer.

• Inner-layer schedule sampling is the classic teacher
forcing strategy:

hi
t, o

i
t = GRUi

dec(ŷ
i
t−1, y

i−1
t | henc,hi

t−1). (4)

• Inter-layer schedule sampling uses the labels instead
of the actual output tokens of the last layer:

hi
t, o

i
t = GRUi

dec(y
i
t−1, ŷ

i−1
t | henc,hi

t−1). (5)

2.3. Curriculum Learning

The proposed hierarchical decoder consists of several decod-
ing layers, the expected output sequences of upper layers are
longer than the ones in the lower layers. The framework is
suitable for applying the curriculum learning [21], of which
core concept is that a curriculum of progressively harder tasks
could significantly accelerate a networks training. The train-
ing procedure is to train each decoding layer for some epochs
from the bottommost layer to the topmost one.

2.4. Repeat-Input Mechanism

The concept of the hierarchical decoding is to hierarchically
generate the sequence, gradually adding words associated
with different linguistic patterns. Therefore, the generated
sequences from the decoders become longer as the generat-
ing process proceeds to the higher decoding layers, and the
sequence generated by a upper layer should contain the words
predicted by the lower layers. To facilitate the behavior, pre-
vious work designs a strategy that repeats the outputs from the
last layer as inputs until the current decoding layer outputs
the same token, so-called the repeat-input mechanism [9].
This approach offers at least two merits: (1) Repeating inputs
tells the decoder that the repeated tokens are important to
encourage the decoder to generate them. (2) If the expected
output sequence of a layer is much shorter than the one of the
next layer, the large difference in length becomes a critical
issue of the hierarchical decoder, because the output sequence
of a layer will be fed into the next layer. With the repeat-input
mechanism, the impact of length difference can be mitigated.

2.5. Attention Mechanism

In order to model the relationship between layers in a gener-
ating hierarchy, we further design attention mechanisms for
the hierarchical decoder. The proposed attention mechanisms
are content-based, which means the weights are determined
based on hidden states of neural models:

αl
i,j =

(hl

i)
T · hl−1

j Dot Product
(hl

i)
TWhl−1

j General
tanh(W (hl

i,h
l−1
j)) Concatenation

, (6)

Generating Linguistic Order BLEU ROUGE-1 ROUGE-2 ROUGE-L
(’NOUN’, ’PROPN’, ’PRON’) → (’VERB’) → (’ADJ’, ’ADV’) → (others)
Sequence-to-Sequence Model 28.89 40.75 12.52 32.05
+ Hierarchical Decoder 43.12 52.99 24.60 40.38
+ Hierarchical Decoder, Repeat-Input 42.33 52.91 24.03 40.08
+ Hierarchical Decoder, Curriculum Learning 58.38 60.42 30.65 44.61
+ All 58.70 62.39 31.64 45.43
(’NOUN’, ’PROPN’, ’PRON’) → (’ADJ’, ’ADV’) → (’VERB’) → (others)
Sequence-to-Sequence Model 28.32 42.77 12.81 33.10
+ Hierarchical Decoder 43.60 53.60 25.02 40.60
+ Hierarchical Decoder, Repeat-Input 40.90 52.27 23.49 39.81
+ Hierarchical Decoder, Curriculum Learning 58.93 60.99 30.87 44.76
+ All 59.32 62.33 32.05 45.37
(’VERB’) → (’NOUN’, ’PROPN’, ’PRON’) → (’ADJ’, ’ADV’) → (others)
Sequence-to-Sequence Model 28.84 39.92 11.63 31.21
+ Hierarchical Decoder 36.60 49.90 21.85 37.70
+ Hierarchical Decoder, Repeat-Input 35.11 48.67 20.67 37.07
+ Hierarchical Decoder, Curriculum Learning 49.29 59.65 27.85 42.98
+ All 50.73 60.76 28.74 43.53
(’VERB’) → (’ADJ’, ’ADV’) → (’NOUN’, ’PROPN’, ’PRON’) → (others)
Sequence-to-Sequence Model 28.61 42.56 12.95 33.12
+ Hierarchical Decoder 40.43 51.67 23.66 39.47
+ Hierarchical Decoder, Repeat-Input 39.14 51.09 22.50 39.22
+ Hierarchical Decoder, Curriculum Learning 58.52 61.28 31.12 44.55
+ All 61.49 62.49 31.98 45.32
(’NOUN’, ’PROPN’, ’PRON’) → (others) → (’VERB’) → (’ADJ’, ’ADV’)
Sequence-to-Sequence Model 27.72 38.92 11.56 30.52
+ Hierarchical Decoder 38.69 51.55 23.36 38.97
+ Hierarchical Decoder, Repeat-Input 38.48 51.76 22.98 39.10
+ Hierarchical Decoder, Curriculum Learning 50.96 59.94 28.88 43.30
+ All 53.11 60.69 29.57 43.80
(’NOUN’, ’PROPN’, ’PRON’) → (others) → (’ADJ’, ’ADV’) → (’VERB’)
Sequence-to-Sequence Model 29.94 43.32 13.24 33.44
+ Hierarchical Decoder 41.78 52.56 24.56 39.97
+ Hierarchical Decoder, Repeat-Input 40.47 52.56 22.98 39.77
+ Hierarchical Decoder, Curriculum Learning 60.50 62.65 32.66 45.41
+ All 59.46 63.20 32.28 45.47

Table 1. The proposed attentional hierarchical NLG models with various generating linguistic orders.

where hl
i is the hidden state at the current step, hl−1

j are the
hidden states from the previous decoder layer, and W is a
learned weight matrix. At each decoding step, attention val-
ues αl

i,j are calculated by these methods and then used to
compute the weighted sum as a context vector, which is then
concatenated to decoder inputs as additional information.

2.6. Training

The objective of the proposed model is to optimize the condi-
tional probability p(y | x), so that the difference between the
predicted distribution and the target distribution, q(ŷk = z |
x), can be minimized:

L = −
N∑

n=1

K∑
k=1

q(ŷk = z | x) log p(yk = z | x), (7)

where n is the number of samples and the labels ŷ are the
word labels. Each decoder in the hierarchical NLG is trained
based on curriculum learning with the objective.

3. EXPERIMENTS

3.1. Setup

The E2E NLG challenge dataset [22]2 is utilized in our ex-
periments, which is a crowd-sourced dataset of 50k instances
in the restaurant domain. Our models are trained on the of-
ficial training set and verified on the official testing set. As
shown in Figure 1, the inputs are semantic frames containing
specific slots and corresponding values, and the outputs are
the associated natural language utterances with the given se-
mantics. For example, a semantic frame with the slot-value

2http://www.macs.hw.ac.uk/InteractionLab/E2E/

Generating Linguistic Order BLEU ROUGE-1 ROUGE-2 ROUGE-L
(’NOUN’, ’PROPN’, ’PRON’) → (’VERB’) → (’ADJ’, ’ADV’) → (others)
All 58.70 62.39 31.64 45.43
All (Dot-Product Attention) 56.24 61.86 30.91 44.78
All (General Attention) 56.80 61.12 31.25 44.78
All (Concatenation Attention) 56.13 60.14 30.11 44.56
(’NOUN’, ’PROPN’, ’PRON’) → (’ADJ’, ’ADV’) → (’VERB’) → (others)
All 59.32 62.33 32.05 45.37
All (Dot-Product Attention) 58.93 62.26 31.83 45.04
All (General Attention) 57.28 62.03 31.43 44.28
All (Concatenation Attention) 57.15 61.66 31.05 44.79
(’VERB’) → (’NOUN’, ’PROPN’, ’PRON’) → (’ADJ’, ’ADV’) → (others)
All 50.73 60.76 28.74 43.53
All (Dot-Product Attention) 50.63 59.53 28.44 43.46
All (General Attention) 48.53 59.82 27.50 42.87
All (Concatenation Attention) 50.75 59.77 28.55 44.50
(’VERB’) → (’ADJ’, ’ADV’) → (’NOUN’, ’PROPN’, ’PRON’) → (others)
All 61.49 62.49 31.98 45.32
All (Dot-Product Attention) 59.39 61.53 31.36 44.93
All (General Attention) 56.52 60.22 30.30 43.64
All (Concatenation Attention) 59.20 61.83 31.48 44.86
(’NOUN’, ’PROPN’, ’PRON’) → (others) → (’VERB’) → (’ADJ’, ’ADV’)
All 53.11 60.69 29.57 43.80
All (Dot-Product Attention) 52.74 60.34 29.38 43.97
All (General Attention) 52.64 60.68 29.67 43.59
All (Concatenation Attention) 50.14 58.92 28.45 43.28
(’NOUN’, ’PROPN’, ’PRON’) → (others) → (’ADJ’, ’ADV’) → (’VERB’)
+ All 59.46 63.20 32.28 45.47
+ All (Dot-Product Attention) 58.31 61.92 31.85 45.14
+ All (General Attention) 57.78 62.68 32.25 44.83
+ All (Concatenation Attention) 59.05 62.01 31.66 45.38

Table 2. The proposed hierarchical NLG models with various generating linguistic orders .

pairs “name[Bibimbap House], food[English],
priceRange[moderate], area [riverside],
near [Clare Hall]” corresponds to the target sentence
“Bibimbap House is a moderately priced restaurant who’s
main cuisine is English food. You will find this local gem
near Clare Hall in the Riverside area.”.

The data preprocessing includes trimming punctuation
marks, lemmatization, and turning all words into lowercase.
To prepare the labels of each layer within the hierarchical
structure of the proposed method, we utilize spaCy toolkit3

to perform POS tagging for the target word sequences. Some
properties such as names of restaurants are delexicalized (for
example, replaced with a symbol “RESTAURANT NAME”)
to avoid data sparsity. In our experiments, we perform six
different generating linguistic orders, in which each hierarchy
is constructed based on different permutations of the POS tag
sets: (1) nouns, proper nouns, and pronouns (2) verbs (3)
adjectives and adverbs (4) others.

The probability of activating inter-layer and inner-layer
teacher forcing is set to 0.5, the probability of teacher forcing
is attenuated every epoch, and the decaying ratio is 0.9. The

3https://spacy.io/

models are trained for 20 training epochs without early stop;
when curriculum learning is applied, only the first layer is
trained during first five epochs, the second decoder layer starts
to be trained at the sixth epoch, and so on. To evaluate the
quality of the generated sequences regarding both precision
and recall, the evaluation metrics include BLEU and ROUGE
(1, 2, L) scores with multiple references [23].

3.2. Results and Analysis

In the experiments, we borrow the idea of hierarchical decod-
ing proposed by the previous work [9] and investigate various
extensions of generating hierarchies. To examine the effec-
tiveness of hierarchical decoders, we control our model size
to be smaller than the baseline’s. Specifically, the decoder
in the baseline seq2seq model has hidden layers of size 400,
while our models with hierarchical decoders have four decod-
ing layers of size 100 for fair comparison.

3.2.1. Effectiveness of Hierarchical Decoders

Table 1 compares the performance between a baseline and
proposed models with different generating linguistic orders.

Generating Linguistic Order Decoder Layer
1 2 3 4

(’NOUN’, ’PROPN’, ’PRON’) → (’VERB’) → (’ADJ’, ’ADV’) → (others) 6.64/7.90 9.67/11.53 12.54/14.84 18.09/21.32
(’NOUN’, ’PROPN’, ’PRON’) → (’ADJ’, ’ADV’) → (’VERB’) → (others) 6.64/7.90 9.51/11.21 12.54/14.84 18.09/21.32
(’VERB’) → (’NOUN’, ’PROPN’, ’PRON’) → (’ADJ’, ’ADV’) → (others) 3.03/3.62 9.67/11.53 12.54/14.84 18.09/21.32
(’VERB’) → (’ADJ’, ’ADV’) → (’NOUN’, ’PROPN’, ’PRON’) → (others) 3.03/3.62 5.91/ 6.94 12.54/14.84 18.09/21.32
(’NOUN’, ’PROPN’, ’PRON’) → (others) → (’VERB’) → (’ADJ’, ’ADV’) 6.64/7.90 12.18/14.38 15.21/18.01 18.09/21.32
(’NOUN’, ’PROPN’, ’PRON’) → (others) → (’ADJ’, ’ADV’) → (’VERB’) 6.64/7.90 12.18/14.38 15.06/17.70 18.09/21.32

Table 3. The average length of the target sequences for each decoder layer in the training data (left) and testing data (right).

For all generating hierarchies with different orders, simply
replacing the decoder by a hierarchical decoder achieves sig-
nificant improvement in every evaluation metrics; for exam-
ple, the topmost generating hierarchy in Table 1 has 49.25%
improvement in BLEU, 30.03% in ROUGE-1, 96.48% in
ROUGE-2, and 25.99% in ROUGE-L respectively. In other
words, separating the generation process into several phases
is proven to be a promising method. Performing curriculum
learning strategy offers a considerable improvement, take the
topmost generating hierarchy in Table 1 for example, this
method yields a 102.07% improvement in BLEU, 48.26% in
ROUGE-1, 144.8% in ROUGE-2, and 39.18% in ROUGE-L.
Despite that applying repeat-input mechanism alone does not
offer benefit, combining these two strategies together further
achieves the best performance. Note that these methods do
not require any additional parameters.

3.2.2. Effectiveness of Attention Mechanism

Unfortunately, even some of the attentional hierarchical de-
coders achieve the best results in the generating hierarchies
(Table 2). Mostly, the additional attention mechanisms are
not capable of bringing benefit for model performance. The
reason may be that the decoding process is designed for grad-
ually importing words in the specific set of linguistic patterns
to the output sequence, each decoder layer is responsible of
copying the output tokens from the previous layer and insert
new words into the sequence precisely. Because of this na-
ture, a decoder needs explicit information of the structure of
a sentence rather than implicit high-level latent information.
For instance, when a decoder is trying to insert some Verb
words into the output sequence, knowing the position of sub-
ject and object would be very helpful.

3.2.3. Analysis of Linguistic Orders

The above results show that among these six different gener-
ating hierarchy, the generating order: (1) verbs→ (2) nouns,
proper nouns, and pronouns→ (3) adjectives and adverbs
→ (4) the other POS tags yields the worst performance. Ta-
ble 3 shows that the gap of average length of target sequences
between the first and the second decoder layer is the largest
among all the hierarchies; in average, the second decoder
needs to insert up to 8 words into the sequence based on 3.62
words from the first decoder layer in this generation process,

which is absolutely difficult. The essence of the hierarchi-
cal design is to separate the job of the decoder into several
phases; if the job of each phase is balanced, it is intuitive that
it is more suitable for applying curriculum learning and im-
prove the model performance.

The model performance is also related to linguistic struc-
tures of sentences: the fifth and the sixth generating hierar-
chies in Table 1 have very similar trends, where the length of
target sentences of each decoder layer is almost identical as
shown in Table 3. However, the model performance differs
a lot. An adverb word could be used to modify anything but
nouns and pronouns, which means that the number of adverbs
used for modifying verbs would be a factor to determine the
generating order as well. In our cases, almost all adverbs in
the dataset are used to describe adjectives, indicating that gen-
erating verbs before inserting adverbs to sequences may not
provide enough useful information; instead, it would possi-
bly obstruct the model learning. We can also find that in all
experiments, inserting adverbs before verbs would be better.

In summary, the concept of the hierarchical decoder is
simple and useful, separating a difficult job to many phases
is demonstrated to be a promising direction and not limited to
a specific generating hierarchy. Furthermore, the generating
linguistic orders should be determined based on the dataset,
and the important factors include the distribution over length
of subsequences and the linguistic nature of the dataset for
designing a proper generating hierarchy in NLG.

4. CONCLUSION

This paper investigates the seq2seq-based model with a hi-
erarchical decoder that leverages various linguistic patterns.
The experiments on different generating linguistic orders
demonstrates the generalization about the proposed hierar-
chical decoder, which is not limited to a specific generating
hierarchy. However, there is no universal decoding hierar-
chy, while the main factor for designing a suitable generating
order is the nature of the dataset.

5. ACKNOWLEDGEMENTS

We would like to thank reviewers for their insightful com-
ments on the paper. This work was financially supported by
Ministry of Science and Technology (MOST) in Taiwan.

6. REFERENCES

[1] Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Lina M
Rojas-Barahona, Pei-Hao Su, Stefan Ultes, David
Vandyke, and Steve Young, “A network-based end-to-
end trainable task-oriented dialogue system,” in Pro-
ceedings of EACL, 2017, pp. 438–449.

[2] Xiujun Li, Yun-Nung Chen, Lihong Li, Jianfeng Gao,
and Asli Celikyilmaz, “End-to-end task-completion
neural dialogue systems,” in Proceedings of IJCNLP,
2017, pp. 733–743.

[3] Bhuwan Dhingra, Lihong Li, Xiujun Li, Jianfeng Gao,
Yun-Nung Chen, Faisal Ahmed, and Li Deng, “Towards
end-to-end reinforcement learning of dialogue agents
for information access,” in Proceedings of ACL, 2017,
pp. 484–495.

[4] Antoine Bordes, Y-Lan Boureau, and Jason Weston,
“Learning end-to-end goal-oriented dialog,” in Proceed-
ings of ICLR, 2017.

[5] Po-Chun Chen, Ta-Chung Chi, Shang-Yu Su, and Yun-
Nung Chen, “Dynamic time-aware attention to speaker
roles and contexts for spoken language understand-
ing,” in Proceedings of 2017 IEEE Workshop on Au-
tomatic Speech Recognition and Understanding, Oki-
nawa, Japan, 2017.

[6] Ta-Chung Chi, Po-Chun Chen, Shang-Yu Su, and Yun-
Nung Chen, “Speaker role contextual modeling for lan-
guage understanding and dialogue policy learning,” in
Proceedings of 2017 International Joint Conference on
Natural Language Processing, Taipei, Taiwan, 2017.

[7] Shang-Yu Su, Pei-Chieh Yuan, and Yun-Nung Chen,
“How time matters: Learning time-decay attention
for contextual spoken language understanding in dia-
logues,” in Proceedings of The 16th Annual Confer-
ence of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, 2018.

[8] Tsung-Hsien Wen, Milica Gasic, Nikola Mrkšić, Pei-
Hao Su, David Vandyke, and Steve Young, “Seman-
tically conditioned lstm-based natural language gener-
ation for spoken dialogue systems,” in Proceedings of
the 2015 Conference on Empirical Methods in Natural
Language Processing, 2015, pp. 1711–1721.

[9] Shang-Yu Su, Kai-Ling Lo, Yi-Ting Yeh, and Yun-Nung
Chen, “Natural language generation by hierarchical de-
coding with linguistic patterns,” in Proceedings of The
16th Annual Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, 2018.

[10] Danilo Mirkovic and Lawrence Cavedon, “Dialogue
management using scripts,” Oct. 18 2011, US Patent
8,041,570.

[11] Steve Young, Milica Gašić, Blaise Thomson, and Ja-
son D Williams, “POMDP-based statistical spoken dia-
log systems: A review,” Proceedings of the IEEE, vol.
101, no. 5, pp. 1160–1179, 2013.

[12] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cer-
nockỳ, and Sanjeev Khudanpur, “Recurrent neural net-
work based language model.,” in Proceedings of Inter-
speech, 2010.

[13] Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan
Černockỳ, and Sanjeev Khudanpur, “Extensions of re-
current neural network language model,” in Proceedings
of ICASSP. IEEE, 2011, pp. 5528–5531.

[14] Tsung-Hsien Wen, Milica Gasic, Dongho Kim, Nikola
Mrksic, Pei-Hao Su, David Vandyke, and Steve Young,
“Stochastic language generation in dialogue using re-
current neural networks with convolutional sentence
reranking,” in Proceedings of SIGDIAL, 2015, pp. 275–
284.

[15] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio, “Learning phrase rep-
resentations using RNN encoder-decoder for statistical
machine translation,” in Proceedings of EMNLP, 2014,
pp. 1724–1734.

[16] Ilya Sutskever, Oriol Vinyals, and Quoc V Le, “Se-
quence to sequence learning with neural networks,” in
Proceedings of NIPS, 2014, pp. 3104–3112.

[17] Ondřej Dušek and Filip Jurčı́ček, “Sequence-to-
sequence generation for spoken dialogue via deep syn-
tax trees and strings,” in Proceedings of ACL, 2016, pp.
45–51.

[18] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio, “Neural machine translation by jointly learning to
align and translate,” in Proceedings of ICLR, 2015.

[19] Ronald J Williams and David Zipser, “A learning algo-
rithm for continually running fully recurrent neural net-
works,” Neural computation, vol. 1, no. 2, pp. 270–280,
1989.

[20] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam
Shazeer, “Scheduled sampling for sequence prediction
with recurrent neural networks,” in Advances in Neural
Information Processing Systems, 2015, pp. 1171–1179.

[21] Jeffrey L Elman, “Learning and development in neural
networks: The importance of starting small,” Cognition,
vol. 48, no. 1, pp. 71–99, 1993.

[22] Jekaterina Novikova, Ondrej Dušek, and Verena Rieser,
“The E2E dataset: New challenges for end-to-end gen-
eration,” in Proceedings of SIGDIAL, 2017, pp. 201–
206.

[23] Chin-Yew Lin, “Rouge: A package for automatic evalu-
ation of summaries,” Text Summarization Branches Out,
2004.

