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© Background

@® Natural language understanding (NLU) and natural language
generation (NLG) are both critical research topics in the NLP and
dialogue fields.
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© Natural Language Understanding (NLU)

@® Parse natural language into structured semantics
® Many-to-one

Natural Language _
Semantic Frame

1. Alimentum city centre is family-friendly. NAME=“Alimentum”
e NLU —— PAVERAImentm
familyFriendly ="yes

2. Alimentum is a family-friendly city centre. L
area = “city centre”



@ Natural Language Generation (NLG)

@® Construct natural language based on structured semantics
® One-to-many

Natural Language _
Semantic Frame

1. Alimentum city centre is family-friendly. NAME=“Alimentum”
NLG «——_ . e
familyFriendly ="yes

2. Alimentum is a family-friendly city centre. _
area = “city centre”



© Duality between NLU and NLG

/» NLU —

Semantic Frame

Natural Language NAME=“Alimentum”
Alimentum city centre is family- familyFriendly =“es”

friendly. area = “city centre”




© Dual Problems

@ Machine Translation
English to Chinese, Chinese to English
Text vs Text

® Text-to-Speech and Speech Recognition
Speech vs Text

@ NLU and NLG

Semantics vs Text
NLU is a huge family of tasks
Semantic frames/meaning representations are abstract



@© Problem Formulation

@ Given n data pairs {@7 M}n .
f Pp—

semantics natural language

P(y | L (9a3—>y) P(33 ‘ Y; Qy—m)
NLG NLU

ming, , (B[l (f(7;0:—y),y)])
mingy_m( v ZQ (g(y; 9y—>$)7 ZE)])

Independent Training




@ oOutline

®

@ Duality Exploitation

Dual Supervised Learning

Su et al., ACL 2019 .
Training Stage



© Probabilistic Duality

@ . ldea: bridge the bi-directional relationship from a
probabilistic perspective.

@ If two models are optimal, we have probabilistic duality:

P($)P(y | L 9x—>y) = P(y)P(m | y§‘9y—>az)
= P(x,y) Vx,y



© Objective

@ Extended to a multi-objective optimization problem:

mingw_w(“l-ll( (; Hm%y)ay)])
mingy_m( v 12( ( y—m 33)])
s.t. P(x)P(y | 2;0,—y) = P(y)P(z | y;0y—2)




@ Dual Supervised Learning (Xia et al., 2017)

@ The standard supervised learning with an additional
regularization term considering the duality between tasks.

ming, _, (
ming, _,, (&

ldualzty

.4‘|

A

A

:Zl (f(:lf, ‘9:13—>y)7 y)] -+ )\az—>yldualz’ty)7

_ll (g(ya Hy—mz)a .CE)] + )\y—m:lduality)a

=(logP(z) +logP(y | ;0,4

logP(y) — logP(x | y; 0y )



Dual Supervised Learning

ldualz’ty :(lolgp( ) E—I_ 10gP(?/ | L (9:13—>y)

_________________________

Marginal Conditional
Distribution Distribution



@ Distribution Estimation as Autoregression

® Decompose any data distribution p(x) into the product of its
nested conditional probability:

D

p(z) = Hp(xd | X1y, Td—1)

d



@ Natural Language

® Language has an intrinsic sequential nature
® Language modeling leverages the autoregressive property

p(yd | Y1y -eey yd—l)
D

P(y) — Hp(yd ‘ Y1, °°°7yd—1)
P GRU

Yd—1



@® Semantic Frames
Language

Bibimbap House is a moderately priced restaurant who's
main cuisine i1s English food.

You will find this local gem near Clare Hall in the
Riverside area.

Semantics

name[Bibimbap House], food[English],
priceRange[moderate], area [riverside], near[Clare Hall]

____________________________________________________________________________________________

_____________________________________________________________________________________________



© Masked Autoencoder (Germain et al., 2015)

p(xi|x2) plx2) plos|x1,22)

1 if mY(K") > m!~t(k) or
m®(d) > m* k),

0 otherwise.




€@ Masked Autoencoder

@ Marginal distribution by product rule:

P(z) = || p(za | Sa)

Note: no explicit rule specifying the exact dependencies between slot-value
pairs in our data, we consider various dependencies via ensemble of
multiple decomposition



@ Experiments

@ Dataset: E2ZE NLG (restaurant domain)
® Model: GRU with identical fully-connected layers at two ends

. <EOS>

coTo R liegere

spice ...
<BOS> at ... spice

NLG NLU




@ NLU/NLG Results

® NLU: F-1 score; NLG: BLEU, ROUGE

NLG Baseline
ROUGE-1

NLG Baseline
BLEU

F1

50 55 60 65

70

NLU Baseline

75



@ NLU/NLG Results

® NLU: F-1 score; NLG: BLEU, ROUGE

NLG Baseline

ROUGE- N DL w/o MADE

NLG Baseline

sLeU | DS w/o MADE

NLU Baseline

1 . DSL w/o MADE

50 95 60 65 70 75



@ NLU/NLG Results

® NLU: F-1 score; NLG: BLEU, ROUGE

NLG Baseline
ROUGE-1 DSL w/o MADE
DSL w/ MADE

NLG Baseline

BLEU DSL w/o MADE
DSL w/ MADE
NLU Baseline
F1 DSL w/o MADE
DSL w/ MADE

\/ Introducing a duality loss as the regularization term is useful :
v Domain knowledge is introduced for estimating data distribution !

___________________________________________________________________________________________________________________________




@ Outline

®
@ Duality Exploitation

Joint Dual Learning

Training Stage
Su et al., ACL 2020



@ A Step Forward

® Prior work learned both models in a supervised manner.
® ldea: design a more flexible and general learning framework



@ Joint Dual Learning

f(x) =argmax P(y | z;0,—,)
g(y) = argmax P(z | y;0y—x)

____________________________________________________________________________________

_____________________________________________________________________________________

Primal Task

RS
VAV e

Y-x



@ Joint Dual Learning

Primal Task

Y—-x

Primal Cycle

Dual Cycle

NLG

. <EOS>

U{><i><>

<BOS> at ... spice

N

at the riverside there

area[r/verSIde], PROETON
eatType[pub], / / R is a pub called the
name[blue spice] '/' blue spice

/7

\ &”” /

spice ... the at

NLU



@ Primal Cycle

Start from data x, transform x by function f:

= Tty riml Task
Compute the loss by 17 (.); . ;y
Transform the output of the primal task by function g: /7 RN

S — (e : é \

T = g(; O0y—a); X APrimal Cycle | y
Compute the loss by I5(.); \ /’
Update model parameters: pN -_..7
633_>y < Hx_w - 71V9$_>y([l1(@) -+ ZQ(C%)]), Dual Task

Oy—z <= Oy—sa - 12Ve, . ([12(2)]); y—o Xk



€@ Dual Cycle

Start from data y, transform y by function g:

z = g(y; Oy—a);
Compute the loss by I5(.);

Primal Task

X—qY \
//, \\‘
§ = f(&;0zy); X ( Dual Cycle , Y

Transform the output of the dual task by function f:
\ /
S /7
~ -~

Compute the loss by [1(.);

Update model parameters:

L

Dual Task

e’y—HIS A e’y—HB - /Y2v0y—>x([l2 (Z%) T ll(g))])’ ‘y — X

9m—>y < 996—>y - ’Y1V99Hy([11(

N
N——"
—
N—"



€@ Learning Objective

® Loss function: cross entropy, policy gradient (REINFORCE),
or their combination

v 4: [T] — 4: [T(y)v 10g p(y ‘ Qj)] (Policy Gradient)

® Reward functions
Explicit reward
Implicit feedback



© Explicit Reward

® Reconstruction Likelihood

logp(x | f(z4;02—y);0y—2) Primal
logp(y | 9(yi; 0y—2); 0z—y) Dual

@ Automatic Evaluation Score
BLEU and ROUGE for language (NLG)
F-score for semantic (NLU)



© Implicit Reward

® Model-based methods estimating data distribution
Language Modeling (LM) for language
Masked Autoencoder (MADE) for semantics



@ Joint Learning

® Proposed methods to enable gradient propagation over

discrete prediction:
Straight-Through Estimator
Distribution as Input

@ Flexibility:
Hybrid objective: could apply multiple objective functions
(including supervised and unsupervised ones)
Towards unsupervised learning: the models could be
potentially trained with unpaired data by full cycles



€© NLU/NLG Results

® NLU: F-1 score;: NLG: BLEU, ROUGE

NLG Baseline
ROUGE-1 N DSL

NLG Baseline
BLEU N DSL

NLU Baseline
1| DsL

50 95 60 65 70 75

80

85



€© NLU/NLG Results

® NLU: F-1 score;: NLG: BLEU, ROUGE

NLG Baseline
Joint Training
NLG Baseline s Al e e S (e, :
BLEU _DSL ‘/+RL(BLEU+ROUGE’F1)
Joint Training
NLU Baseline

Joint Training
50 95 60 65 70 75 80 85

v Ajoint learning framework provides the flexibility of incorporating superwsed
. and unsupervised learning algorithms to jointly train two models.

____________________________________________________________________________________________________________________________



€ Generated Examples

familyFriendly[yes], area[city centre],
eatType[pub], food[chinese], name[blue spice],
near[rainbow vegetarian cafe]

Baseline
Primal Task
familyFriendly[yes], food:[chinese] X— 'y
PR
/7 N\
/ \
Proposed I bual Cvel \ |
X , Dual Cycle ,
familyFriendly[yes], area[city \ /
centre], eatType[pub], N e o . 7
priceRange[moderate],
food[chinese], name[blue spice] Dual Task

Y—-x

blue spice is a family friendly pub located in the
city centre it serves chinese food and is near the
rainbow vegetarian cafe

Baseline

the chinese restaurant the twenty two
is a family friendly restaurant

V Proposed

the chinese restaurant the blue spice is
located in the city centre it is moderately
priced and kid friendly



© Outline

@
@ Duality Exploitation
Training Stage

Dual Mutual Information Maximization
Unpublished



€ Motivation

@ Challenges might come from the nature of data

Natural Language Semantic Frame
1. Alimentum city centre is family- NAME=“Alimentum”

friendly.
2. Alimentum is a family-friendly city
centre.

familyFriendly ="yes”
area = “city centre”

—_— oy
L
-—~—~—
L
—



@ Mutual Information Maximization

® We aim to enhance the joint learning framework by
maximizing mutual information between the representation
of language and semantics.

Primal Task

X * = information~ > Y

\ Dual Task /

Y—-Xx



@® Mutual Information Estimation

@ MI cannot be directly used as a training objective due to
intractabillity.

® Deep Infomax (DIM) (Hjelm et al., 2018) enables estimating
MI by back-propagation in neural networks.



® Deep Infomax (DIM) (Hjelm et al., 2018)

@ A discriminator distinguishes between positive samples
from the joint distribution and negative samples from the

product of marginals.
Use Jensen-Shannon divergence via BCE loss (Yeh et al., 2019)

MI(X:Y) >Esllog(d(x, y))}+
5 Enllog(1 — d(z,9)]+

S Enllog(1 — d(z,))]



® Primal Cycle

Start from data x, transform z by function f:
g = f(z;05y); NLG
Compute the loss by L£¢(9,y);

Primal Task
Random shuffle B and map the data pairs to original order X— ,y
to have negative samples (z,7) and (Z,vy) ; =
o ’ N
Compute MI regularization: / \
1 ) ) o é \
Lo = - Zlog(d(m, y)) + log(1l —d(z,y)) + log(1 — d(z,9)); X APrimaI Cycle |
/
Transform the output of the primal task by function g: \\ /
. A 2 S s
T = 9(9; 0y—a); -~_ -
Compute the loss by £,(Z, z); Dual Task
Update model parameters: Y- X
915—*?4 < 833—>y - ’yvex—ﬂy (‘Cf(> + ‘CQ<> — )‘[’MI()) NLU

Oysa + Oy - YV, 0, (£1() + L) = Moarz()

Yy—x



® Dual Cycle

Start from word representations y, transform y by function g:

&= g(y; Oysa); NLG

Compute the loss L, (Z, z);

Random shuffle B and map the data pairs to original order Primal Task

to have negative samples (Z,%) and (Z,y) ; XY
- U
Compute MI regularization: ’ \\
/
1 . _ .

Lar = — > log(d(2,y)) + log(1 — d(z,y)) + log(1 — d(&,7)); X ( Dual Cyde‘?
Transform the output of the dual task by function f: \ /

. . N /

y:f(xaex—)y)r S
Compute the loss by L¢(9,y); Dual Task
Update model parameters: Y-X

Qy_m <— Hy—m; - ’)/VQy_m (Ef() + £9(> = )\L:M[()),



@® Datasets

0
QO
@ ATIS: flight reservations

Sentence-level intents and word-level slot tags

® SNIPS: voice assistants for multiple domains
Sentence-level intents and word-level slot tags

@ EZ2E NLG: restaurant domain
Each meaning representation has up to 5 references
In natural language and no intent labels

«=



® NLU/NLG Results

@ ATIS data: 5k examples in the flight booking domain

NLG NLG Baseline _
Dual Supervised Learning
= .
+ MMI

NLG Baseline

NL(BBLEU Dual Supervised Learning
Joint Model
+ MMI
NLU Base
DSL
+ MMI

0 10 20 30 40 50 60 70 80 90 100




¢ NLU/NLG Results

® SNIPS data: voice assistants for multiple domains

NLG NLG Baseline
Dual Supervised Learnin
+ MM

NLG Baseline

NLG Dual Supervised Learnin
+ MMI
NLU Base
Joint Model
+ MMI

0 10 20 30 40 50 60 70 80 90 100




® NLU/NLG Results

@ E2E NLG data: 50k examples in the restaurant domain

NLG NLG Baseline DuAl S ced L .
_ ual Supervised Learnin
ROUGE-1 Joint Model J
+ MMI

NLG Baseline
Dual Supervised Learning
Joint Model

NLGy gy

+ MMI

NLU Base

DSL

Joint Model
+ MMI




® Outline

®
@ Duality Exploitation

Dual Inference Inference Stage
Su et al., Findings in EMNLP 2020



€@ Motivation

@ Prior work utilized the duality in the training stage

® Due to current large-scaled NLP models, it is
difficult/impractical to re-train models.

GPT-2 GPT-3
1.5B Parameters 175B Parameters



@ Dual Inference for NLU / NLG

® Normal inference process

f(x) = argmax {

og P (y

g(y) = arg max {

og P (x

€3 9w—>y)}
Y ‘9y—>x)}

Primal Task

/ [ X—=7Y

X

Dual Task
9. Yy —-X

b



@ Dual Inference for NLU / NLG

® Inference with duality (Xia et al., 2017)

____________________________________________

_____________________________________________

Estimated by Estimated by
forward model backward model

log P(y | x;0y—z)

Pz | y;0y—2)P(y; 0,)
= log( P(x;0y) |

= log P(z | y;0, ) +log P(y; 0,) — log P(x;0.)




@ Dual Inference for NLU / NLG

f(x) ~ argmax{alog P(y | x; 93;_>y)—|— forward model
(1 — Oz)(lOg P(CE ‘ Y; Qy_m)—F backward model
log P(y;0,) — log P(x;0;))}
Marginal of y



@ Marginal Distribution Estimation

@ Prior work uses MADE, treating semantics as a finite
number of labels.

@ Considering scalability, we propose a non-autoregressive
masked-model.

Predict
masked From

slot type T T T 1 . e
[ Transformer Encoder

U

BILSTM BILSTM

Semantic
Features

[ ISYIN ]

flight From Kansas To Los Angeles c o

L—— Intent L Slot value J L Slot value ——




© NLU/NLG Results

@ E2E NLG data: 50k examples in the restaurant domain

NLG N Dual Supervised Learning
ROUGE-1 |
. Joint Model

NLG B Dual Supervised Learning
BLEU sy Joint Model

NLU T psL
F1
O Joint Model

20 30 40 50 60 70 80 90 100



@ NLU/NLG Results

@ E2E NLG data: 50k examples in the restaurant domain

NLG Dual Supervised Learning
+ Dual Inference
ROUGE-1
Joint Model
+ Dual Inference
NLU DSL
F1 + Duallnf
Joint Model
+ Duallnf

20 30 40 50 60 70 80 90 100

Dual Supervised Learning
+ Dual Inference
Joint Model

+ Dual Inference

NLG
BLEU




@ NLU/NLG Results

@ ATIS data: 5k examples in the flight booking domain
NG I Dual Supervised Learning
ROVSET s Joint Model

NLG P Dual Supervised Learning
Y s Joint Model

NLU e nsL
Y Joint Model

0 10 20 30 40 50 60 70 80 90 100



@ NLU/NLG Results
@ ATIS data: 5k examples in the flight booking domain

+ Dual Inference
ROUGE-1
Joint Model
N - Dual Inference

NLG _Dual Supervised Learning
+ Dual Inference
BLEU Joint Model
D + Dual Inference

. R,
F1

Joint Model
N -+ Duallnf
o v Leveraging the duality without re-training is useful 100

v/ Consistent improvement for multiple datasets



© Outline

®
@ Duality Exploitation

Dual Finetuning Finetuning Stage



@ Motivation

® Nowadays, finetuning pre-trained language models is often
the first choice for a NLP problem.

® One model for two dual tasks.

Sent?nces Semantics
4 ! : )
NLG LM NLU
| .

Semantics Sentences



@ GPT-2 (Radford et al., 2019)

® Generative Pre-trained Transformer 2

GPI1-2

@ Layered Transformer decoder blocks TRA
LARGE
[ )
G pT_ 2 a8 DECODER )
LARGE
G pT_ 2 (36 ( DECODER )N
MEDIUM 6 DECODER
G pT_ 2 24 DECODER ? o 5 E DECODER %
SMALL .. a DECODER ) a( DECODER )
12 DECODER ) 3 ( DECODER D 3 ( DECODER )
i 2 @ DECODER ) 2 DECODER 9 2 ( DECODER )
1 @ DECODER ) % ( DECODER >j ! ( DECODER >) \1< DECODER )j
Model Dimensionality: 768 Model Dimensionality: 1024 Model Dimensionality: 1280 Model Dimensionality: 1600

“Language models are unsupervised multitask learners.” Radford, et al. 2019



@ GPT-2 (rRadford et al., 2019)

® Pretrained on WebText, which has over 8 million documents
for a total of 40 GB of text

@ Language Modeling
® Auto-regressive nature [ ]

Masked Self-Attention

____________________________________________________________________________________________________

_____________________________________________________________________________________________________



@® Objective Design

@ How to enforce the model to execute the target task?
® Special task tokens

Sentences Semantics
1 ]
C | | N
NLG GPT-2 NLU
\_ : | y

Semantics <NLG> Sentences <NLU>



@ Objective Design

® Language Modeling training

[...Semantics...] <EOS>

Pttt
e 2
GPT-2 NLU
N y
NN |

<NLG> [...Sentence...] <NLU> [...Semantics...] <EOS>




@ Inference

® Let the model generate sequences auto-regressively

| [...Semantics...] <EOS>

t tt11
(" )
GPT-2 NLU
& : J
[T

[...Sentence...] <NLU> | [...Semantics...]

Query




@ NLU/NLG Results on SNIPS

NLG Dual Supervised Learning
ROUGE-1 Joint Model + MMI

NLG Dual Supervised Learning
BLEU Joint Model + MMI

NLU Dual Supervised Learning
F Joint Model + MMI

I Dual Finetuning

0 10 20 30 40 50 60 70 80 90 100



(D NLU/NLG Results on ATIS

NLG Dual Supervised Learning
ROUGE- Joint Model + MMI

NLG Dual Supervised Learning
BLEU Joint Model + MMI

I 0! Finetuning

Dual Supervised Learning
F1 Joint Model + MMI

R Dual Finetuning

’ / Dual Finetuning works well especially for NLG.

NLU



® Co-Training

@ Train two tasks at one time
® Language modeling training

[...Sentence...] [...Semantics...] <EOS>
t 11 Pttt 1
4 )
NLG GPT-2 NLU
o J

<NLG> [...Sentence...] <NLU> [...Semantics...] <EOS>




® Performance Comparison (SNIPS)
N

GPT2-small

De-Training

GPT2-large
0 50 100 150 200 250

mF1 mBLEU mROUGE-1
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® Summary
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@ Summary

@ Dual Supervised Learning
Supervised Learning: duality loss as regularization term

@ Joint Dual Learning Training Stage
Semi-supervised Learning: joint learning framework

® Dual Mutual Information Maximization
Supervised Learning + MMI: auxiliary MMI objective

@ Dual Inference
Inference: enhanced inference process

@ Dual Finetuning | |
Finetuning: dual finetuning objectives Finetuning Stage

Inference Stage



@ Challenges

@ Not every NLU data is suitable for augmenting into NLG
data.

@ NLU always requires human annotations, technically it is
infeasible to perform “fully” unsupervised learning.

@ Different relationships between tasks



@ Outline

®
® Related work



@ Semantic Parsing with Dual Learning

® Contemporaneous work focusing on semantic parsing
@ Similar to our Joint Dual Learning

Query Logical Form
“show flight from ¢iO to ci1” (lambda $0 e (and ( from $0 ci0 )
(to $0 ci1 ) (flight $0)))”
x ——Q2LF  — —— R V'
reconstfuction reward Yy S :’:v];:;:jy ::\B:;;y* i ¢ | reconstruction reward
x' +— A — LF2Q <+«———y
(a) query - logical_form — query loop (b) logical_form — query — logical_form loop

“Semantic Parsmg with Dual Learning” Cao et al., NAACL 2019



@ Latent Variable Model (Tseng et al., 2020)

® Coupling NLU and NLG with a latent variable representing
the shared intent between natural language and formal

representations
NLU NLG

"""""""""""""""""""""""""""""""""""""

“A Generative Model for Joint Natural Language Understanding and Generation” Tseng et al., ACL 2020



@ Pragmatically Text Generation

@ Computational pragmatics: Listener vs Speaker

@ The listener model and the base speaker model together
define a pragmatic speaker

Sit(o i) = L"(i | 0)* - So(o | i)'~
NLU NLG
@ Similar to our Dual Inference

___________________________________________________________________

___________________________________________________________________

“‘Pragmatically Informative Text Generation” Shen et al., NAACL 2019



Thanks for your attention.
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@ Natural Language log P(x)

@ Language modeling

D
p(@) = [ [p(za @1, wa-) P(xg | X1, o) Xg_1)
d
4 p
GRU
N\ J
Xd—1

Shang-Yu Su, Chao-Wei Huang, and Yun-Nung Chen, “Dual Supervised Learning for Natural Language Understanding
and Generation,” in Proceedings of The 57th Annual Meeting of the Association for Computational Linguistics (ACL), 2019.



‘ Semantic Frame log P(y)

® We treat NLU as a multi-label classification problem
@ Each label is a slot-value pair 0

______________________________________________________________________

RESTAURANT=“McDonald’s”
PRICE="cheap’
' LOCATION= “nearby the station”

______________________________________________________________________

_______________________________________________________________________________________________________________________

Shang-Yu Su, Chao-Wei Huang, and Yun-Nung Chen, “Dual Supervised Learning for Natural Language Understanding
and Generation,” in Proceedings of The 57th Annual Meeting of the Association for Computational Linguistics (ACL), 2019.



@ Straight-Through Estimator

@ Directly using the gradients of
discrete samples as the gradients of
the distribution parameters.

f(2)
0f(2)
0z 1
z = argmax(p(x))
1 ? Straight-Through Trick
p(z)
dp(z) ‘ ‘ Forward pass
00

Backpropagation



@ Distribution as Input

® For NLU, we use the predicted distribution over the
vocabulary from NLG to perform the weighted-sum of word
embeddings.

® For NLG, the probability distribution of slot-value pairs
predicted by NLU can directly serve as the input vector.



@ Dual Supervised Learning Results

NLG

BLEU ROUGE-1 ROUGE-2 ROUGE-L

lterative training 71.14 55.05 55.37 27.95 39.90
Dual Supervised Learning with A = 0.1 72.32 57.16 56.37 29.19 40.44
Dual Supervised Learning with A = 0.01 72.08 55.07 55.56 28.42 40.04
Dual Supervised Learning with A = 0.001 71.71 56.17 55.90 28.44 40.08

Dual Supervised Learning w/o MADE 70.97 55.96 55.99 28.74 39.98



@ Joint Dual Learning Results

NLG

ROUGE-1

ROUGE-2 ROUGE-L

lterative training 71.14 55.05 55.37 27.95 39.90
Dual Supervised Learning 72.32 57.16 56.37 29.19 40.44
Joint Training (Straight-Through) 71.73 55.19 55.16 27.45 39.33
Joint Training (Distribution as Input) 80.03 55.34 56.17 28.48 39.24

+ RL(BLEU+ROUGE, F1) 80.35 57.59 56.71 29.06 40.28

+ RL(LM, MADE) 79.52 55.61 55.97 28.57 39.97



@® MMI Results on ATIS

NLU NLG

Accuracy F1 BLEU ROUGE-1 ROUGE-2 ROUGE-L
lterative Baseline 85.98 96.28 16.71 37.11 13.47 35.88
Dual Supervised Learning 83.02 94.73 16.72 37.89 14.60 36.52
Joint Baseline 80.61 91.26 17.26 38.10 14.69 36.73
+ MI(semantics, word) 88.15 93.75 24.46 42.92 23.01 41.78

+ Ml(semantics, sentence)  88.50 93.85 19.28 39.55 16.88 38.19



@ MMI Results on SNIPS

NLU NLG

Accuracy F1 BLEU ROUGE-1 ROUGE-2 ROUGE-L
lterative Baseline 97.40 96.98 14.69 35.20 13.27 34.19
Dual Supervised Learning 97.39 96.35 15.90 39.85 16.39 38.69
Joint Baseline 97.32 94.56 17.19 38.59 16.36 37.53
+ Ml(semantics, word) 97.02 94.25 19.30 42.20 19.66 40.83

+ Ml(semantics, sentence) 96.93 95.42 16.82 39.06 16.45 37.75



€ MMI Results on E2E NLG

NLU NLG

Accuracy F1 BLEU ROUGE-1 ROUGE-2 ROUGE-L
lterative Baseline - 94.41 18.21 31.66 12.47 27.39
Dual Supervised Learning - 94.36 24.32 45.91 19.31 39.92
Joint Baseline - 92.69 24 .47 45.41 19.22 39.10

+ Ml(semantics, word) 92.69 40.53 61.00 36.14 52.60

+ Ml(semantics, sentence) - 92.64 28.21 49.52 23.18 41.63



Dual Inference Results on ATIS

NLU NLG

Accuracy F1 BLEU ROUGE-1 ROUGE-2 ROUGE-L
lterative Baseline 84.10 94.26 16.08 35.10 11.94 33.73
+ Duallnf(a=0.5, $=0.5) 85.07 93.84 17.38 36.40 13.33 35.09
+ Duallnf(a*, B*) 85.57 94.63 16.16 35.19 11.93 33.75
Dual Supervised Learning 82.98 94.85 16.98 38.83 15.56 37.50
+ Duallnf(a=0.5, p=0.5) 83.68 94.89 20.69 40.62 17.72 39.31
+ Duallnf(a*, B*) 84.26 95.32 17.05 38.82 15.57 37.42
Joint Baseline 81.44 90.37 21.00 39.70 18.91 38.48
+ Duallnf(a=0.5, $=0.5) 81.21 88.42 22.60 41.19 20.24 39.88

+ Duallnf(a®, B*) 85.88 90.66 20.67 39.41 18.68 38.16



@ Dual Inference Results on SNIPS

NLU NLG

Accuracy F1 BLEU ROUGE-1 ROUGE-2 ROUGE-L
lterative Baseline 96.58 96.67 15.49 34.32 13.75 33.26
+ Duallnf(a=0.5, $=0.5) 97.07 96.70 16.90 35.43 15.18 34.41
+ Duallnf(a*, B*) 96.88 96.76 15.46 34.21 13.78 33.14
Dual Supervised Learning 96.83 96.71 15.96 36.69 15.39 35.73
+ Duallnf(a=0.5, p=0.5) 96.88 96.80 18.07 37.63 16.75 36.67
+ Duallnf(a*, B*) 95.34 96.68 16.08 36.97 15.62 36.04
Joint Baseline 97.18 94.57 17.15 36.32 15.68 35.36
+ Duallnf(a=0.5, $=0.5) 97.27 95.59 18.56 37.87 17.25 36.90

+ Duallnf(a*, B*) 95.54 96.06 18.26 38.16 17.70 37.40



@ Dual Inference Results on E2E NLG

lterative Baseline
+ Duallnf(a=0.5, $=0.5)
+ Duallnf(a*, %)

Dual Supervised Learning
+ Duallnf(a=0.5, $=0.5)
+ Duallnf(a*, %)

Joint Baseline
+ Duallnf(a=0.5, $=0.5)
+ Duallnf(a*, %)

Accuracy

F1

94.25
94.29
94.55
94 .49
94.53
94 .47
93.51
93.43
93.88

BLEU
24 .98
25.34
25.35
24.73
25.40
24.67
25.19
25.57
25.54

NLG
ROUGE-1 ROUGE-2
44.60 19.40
44 .82 19.73
44.87 19.74
45.74 19.60
46.25 20.18
45.71 19.56
44.80 19.59
45.11 19.90
4517 19.89

ROUGE-L
37.99
38.23
38.30
39.91
40.42
39.88
38.20
38.56
38.61



@ Transformer

@® Multi-Head Attention
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