

Exploiting the Duality between Language Understanding and Generation and Beyond

Shang-Yu Su 蘇上育

Advisor: Yun-Nung (Vivian) Chen 陳縕儂

2

Self-Introduction

- B.S. NTUEE, 2017
- Dialogue Policy Learning
 - IJCNLP (2017), ACL (2018), EMNLP (2018)
- Natural Language Understanding (NLU)
 - ASRU (2017), NAACL-HLT (2018), ICASSP (2019)
- Natural Language Generation (NLG)
 - NAACL (2018), SLT (2018)
- Duality between NLU and NLG
 - ACL (2019, 2020), EMNLP (2020)

- Background
- **Duality Exploitation**
 - **Dual Supervised Learning**
 - Joint Dual Learning
 - **Dual Mutual Information Maximization**
 - **Dual Inference**
 - **Dual Finetuning**
- Summary
- Related work

Training Stage

Inference Stage

Finetuning Stage

Outline

- Background
- Duality Exploitation
 - Dual Supervised Learning
 - Joint Dual Learning
 - Dual Mutual Information Maximization
 - Dual Inference
 - Dual Finetuning
- Summary
- Related work

Background

 Natural language understanding (NLU) and natural language generation (NLG) are both critical research topics in the NLP and dialogue fields.

Natural Language Understanding (NLU)

- Parse natural language into structured semantics
- Many-to-one

Natural Language

1. Alimentum city centre is family-friendly.

2. Alimentum is a family-friendly city centre.

NLU

Semantic Frame

NAME="Alimentum"
familyFriendly ="yes"
area = "city centre"

7

Natural Language Generation (NLG)

- Construct natural language based on structured semantics
- One-to-many

Natural Language

1. Alimentum city centre is family-friendly.

2. Alimentum is a family-friendly city centre.

Semantic Frame

NAME="Alimentum" familyFriendly ="yes" area = "city centre"

Duality between NLU and NLG

NLU and NLG are a dual problem pair.

Dual Problems

- Machine Translation
 - English to Chinese, Chinese to English
 - Text vs Text
- Text-to-Speech and Speech Recognition
 - Speech vs Text
- NLU and NLG
 - Semantics vs Text
 - NLU is a huge family of tasks
 - Semantic frames/meaning representations are abstract

Problem Formulation

Given n data pairs

$$\{(\underline{x_i},\underline{y_i})\}_{i=1}^n$$

semantics natural language

$$P(y \mid x; \theta_{x \to y})$$

$$P(x \mid y; \theta_{y \to x})$$

NLG

NLU

Independent Training

$$\min_{\theta_{x\to y}} (\mathbb{E}[l_1(f(x;\theta_{x\to y}),y)])$$
$$\min_{\theta_{y\to x}} (\mathbb{E}[l_2(g(y;\theta_{y\to x}),x)])$$

- Background
- **Duality Exploitation**
 - **Dual Supervised Learning**
 - Su et al., ACL 2019
 - Joint Dual Learning
 - **Dual Mutual Information Maximization**
 - Dual Inference
 - Dual Finetuning (ongoing)
- Summary
- Related work

Training Stage

Probabilistic Duality

- Idea: bridge the bi-directional relationship from a probabilistic perspective.
- If two models are optimal, we have probabilistic duality:

$$P(x)P(y \mid x; \theta_{x \to y}) = P(y)P(x \mid y; \theta_{y \to x})$$
$$= P(x, y) \ \forall x, y$$

Objective

Extended to a multi-objective optimization problem:

$$\begin{cases} \min_{\theta_{x \to y}} (\mathbb{E}[l_1(f(x; \theta_{x \to y}), y)]) \\ \min_{\theta_{y \to x}} (\mathbb{E}[l_2(g(y; \theta_{y \to x}), x)]) \\ \text{s.t. } P(x)P(y \mid x; \theta_{x \to y}) = P(y)P(x \mid y; \theta_{y \to x}) \end{cases}$$

Dual Supervised Learning (Xia et al., 2017)

 The standard supervised learning with an additional regularization term considering the duality between tasks.

$$\begin{cases} \min_{\theta_{x\to y}} (\mathbb{E}[l_1(f(x;\theta_{x\to y}),y)] + \lambda_{x\to y} l_{duality}), \\ \min_{\theta_{y\to x}} (\mathbb{E}[l_1(g(y;\theta_{y\to x}),x)] + \lambda_{y\to x} l_{duality}), \end{cases}$$

$$l_{duality} = (\log \hat{P}(x) + \log P(y \mid x; \theta_{x \to y})$$
$$-\log \hat{P}(y) - \log P(x \mid y; \theta_{y \to x}))^{2}.$$

Dual Supervised Learning

$$l_{duality} = (\log \hat{P}(x) + \log P(y \mid x; \theta_{x \to y}) - \log \hat{P}(y) - \log P(x \mid y; \theta_{y \to x}))^{2}.$$

Marginal Distribution

Conditional Distribution

? How to estimate the marginals?

Distribution Estimation as Autoregression

 Decompose any data distribution p(x) into the product of its nested conditional probability:

$$p(x) = \prod_{d}^{D} p(x_d \mid x_1, ..., x_{d-1})$$

Natural Language

- Language has an intrinsic sequential nature
- Language modeling leverages the autoregressive property

$$\hat{P}(y) = \prod_{d}^{D} p(y_d \mid y_1, ..., y_{d-1})$$

Semantic Frames

Language

Bibimbap House is a moderately priced restaurant who's main cuisine is English food.

You will find this local gem near Clare Hall in the Riverside area.

Semantics

name[Bibimbap House], food[English], priceRange[moderate], area [riverside], near[Clare Hall]

Masked Autoencoder (Germain et al., 2015)

Masked Autoencoder

• Marginal distribution by product rule:

$$\hat{P}(x) = \prod_{d}^{D} p(x_d \mid S_d)$$

 Note: no explicit rule specifying the exact dependencies between slot-value pairs in our data, we consider various dependencies via ensemble of multiple decomposition

Experiments

- Dataset: E2E NLG (restaurant domain)
- Model: GRU with identical fully-connected layers at two ends

NLG

NLU

- ✓ Introducing a duality loss as the regularization term is useful
- ✓ Domain knowledge is introduced for estimating data distribution

Outline

- Background
- Duality Exploitation
 - Dual Supervised Learning
 - Joint Dual Learning
 - Su et al., ACL 2020
 - Dual Mutual Information Maximization
 - Dual Inference
 - Dual Finetuning
- Summary
- Related work

Training Stage

A Step Forward

- Prior work learned both models in a supervised manner.
- Idea: design a more flexible and general learning framework

Towards semi-supervised and unsupervised learning

Joint Dual Learning

$$f(x) = \arg \max P(y \mid x; \theta_{x \to y})$$
$$g(y) = \arg \max P(x \mid y; \theta_{y \to x})$$

We want cycle-consistency: $g(f(x)) \approx x$

Joint Dual Learning

Primal Cycle

Start from data x, transform x by function f:

$$\hat{y} = f(x; \theta_{x \to y});$$

Compute the loss by $l_1(.)$;

Transform the output of the primal task by function g:

$$\hat{x} = g(\hat{y}; \theta_{y \to x});$$

Compute the loss by $l_2(.)$;

Update model parameters:

$$\theta_{x \to y} \leftarrow \theta_{x \to y} - \gamma_1 \nabla_{\theta_{x \to y}} ([l_1(\hat{y}) + l_2(\hat{x})]);$$

$$\theta_{y \to x} \leftarrow \theta_{y \to x} - \gamma_2 \nabla_{\theta_{y \to x}} ([l_2(\hat{x})]);$$

Dual Cycle

Start from data y, transform y by function g:

$$\hat{x} = g(y; \theta_{y \to x});$$

Compute the loss by $l_2(.)$;

Transform the output of the dual task by function f:

$$\hat{y} = f(\hat{x}; \theta_{x \to y});$$

Compute the loss by $l_1(.)$;

Update model parameters:

$$\theta_{y\to x} \leftarrow \theta_{y\to x} - \gamma_2 \nabla_{\theta_{y\to x}} ([l_2(\hat{x}) + l_1(\hat{y})]);$$

$$\theta_{x\to y} \leftarrow \theta_{x\to y} - \gamma_1 \nabla_{\theta_{x\to y}} ([l_1(\hat{y})]);$$

Learning Objective

 Loss function: cross entropy, policy gradient (REINFORCE), or their combination

$$abla \mathbb{E}[r] = \mathbb{E}[r(y) \nabla \log p(y \mid x)]$$
 (Policy Gradient)

- Reward functions
 - Explicit reward
 - Implicit feedback

Explicit Reward

Reconstruction Likelihood

$$\begin{cases} \log p(x \mid f(x_i; \theta_{x \to y}); \theta_{y \to x}) & \mathbf{Primal} \\ \log p(y \mid g(y_i; \theta_{y \to x}); \theta_{x \to y}) & \mathbf{Dual} \end{cases}$$

- Automatic Evaluation Score
 - BLEU and ROUGE for language (NLG)
 - F-score for semantic (NLU)

Implicit Reward

- Model-based methods estimating data distribution
 - Language Modeling (LM) for language
 - Masked Autoencoder (MADE) for semantics

Joint Learning

- Proposed methods to enable gradient propagation over discrete prediction:
 - Straight-Through Estimator
 - Distribution as Input

Flexibility:

- Hybrid objective: could apply multiple objective functions (including supervised and unsupervised ones)
- Towards unsupervised learning: the models could be potentially trained with unpaired data by full cycles

NLU: F-1 score; NLG: BLEU, ROUGE

NLU: F-1 score; NLG: BLEU, ROUGE

✓ A joint learning framework provides the flexibility of incorporating supervised and unsupervised learning algorithms to jointly train two models.

Generated Examples

familyFriendly[yes], area[city centre], eatType[pub], food[chinese], name[blue spice], near[rainbow vegetarian cafe] blue spice is a family friendly pub located in the city centre it serves chinese food and is near the rainbow vegetarian cafe

Baseline

familyFriendly[yes], food:[chinese]

Proposed

familyFriendly[yes], area[city centre], eatType[pub], priceRange[moderate], food[chinese], name[blue spice]

Baseline

the chinese restaurant the twenty two is a family friendly restaurant

Proposed

the chinese restaurant the blue spice is located in the city centre it is moderately priced and kid friendly

Outline

- Background
- Duality Exploitation
 - Dual Supervised Learning
 - Joint Dual Learning
 - Dual Mutual Information Maximization
 - Unpublished
 - Dual Inference
 - Dual Finetuning
- Summary
- Related work

Training Stage

Motivation

Challenges might come from the nature of data

Natural Language

1. Alimentum city centre is family-friendly.

2. Alimentum is a family-friendly city

centre.

Semantic Frame

NAME="Alimentum" familyFriendly ="yes" area = "city centre"

MMI between the representation of language and semantics.

Mutual Information Maximization

 We aim to enhance the joint learning framework by maximizing mutual information between the representation of language and semantics.

Mutual Information Estimation

- MI cannot be directly used as a training objective due to intractability.
- Deep Infomax (DIM) (Hjelm et al., 2018) enables estimating
 MI by back-propagation in neural networks.

Deep Infomax (DIM) (Hjelm et al., 2018)

- A discriminator distinguishes between positive samples from the joint distribution and negative samples from the product of marginals.
 - Use Jensen-Shannon divergence via BCE loss (Yeh et al., 2019)

$$\begin{split} MI(X;Y) \geq & \mathbb{E}_{\mathbb{P}}[\log(d(x,y))] + \\ & \frac{1}{2} \mathbb{E}_{\mathbb{N}}[\log(1 - d(x,\bar{y}))] + \\ & \frac{1}{2} \mathbb{E}_{\mathbb{N}}[\log(1 - d(\bar{x},y))] \end{split}$$

Primal Cycle

Start from data x, transform x by function f:

$$\hat{y} = f(x; \theta_{x \to y});$$

Compute the loss by $\mathcal{L}_f(\hat{y}, y)$;

Random shuffle B and map the data pairs to original order to have negative samples (\hat{x}, \bar{y}) and (\bar{x}, y) ;

Compute MI regularization:

$$\mathcal{L}_{MI} = \frac{1}{n} \sum_{i} \log(d(\hat{x}, y)) + \log(1 - d(\bar{x}, y)) + \log(1 - d(\hat{x}, \bar{y}));$$

Transform the output of the primal task by function g:

$$\hat{x} = g(\hat{y}; \theta_{y \to x});$$

Compute the loss by $\mathcal{L}_q(\hat{x}, x)$;

Update model parameters:

$$\theta_{x \to y} \leftarrow \theta_{x \to y} - \gamma \nabla_{\theta_{x \to y}} (\mathcal{L}_f(.) + \mathcal{L}_g(.) - \lambda \mathcal{L}_{MI}(.));$$

$$\theta_{y \to x} \leftarrow \theta_{y \to x} - \gamma \nabla_{\theta_{y \to x}} (\mathcal{L}_f(.) + \mathcal{L}_g(.) - \lambda \mathcal{L}_{MI}(.));$$

Dual Cycle

Start from word representations y, transform y by function g:

$$\hat{x} = g(y; \theta_{y \to x});$$

Compute the loss $\mathcal{L}_g(\hat{x}, x)$;

Random shuffle B and map the data pairs to original order to have negative samples (\hat{x}, \bar{y}) and (\bar{x}, y) ;

Compute MI regularization:

$$\mathcal{L}_{MI} = \frac{1}{n} \sum_{i} \log(d(\hat{x}, y)) + \log(1 - d(\bar{x}, y)) + \log(1 - d(\hat{x}, \bar{y}));$$

Transform the output of the dual task by function f:

$$\hat{y} = f(\hat{x}; \theta_{x \to y});$$

Compute the loss by $\mathcal{L}_f(\hat{y}, y)$;

Update model parameters:

$$\theta_{x \to y} \leftarrow \theta_{x \to y} - \gamma \nabla_{\theta_{x \to y}} (\mathcal{L}_f(.) + \mathcal{L}_g(.) - \lambda \mathcal{L}_{MI}(.));$$

$$\theta_{y \to x} \leftarrow \theta_{y \to x} - \gamma \nabla_{\theta_{y \to x}} (\mathcal{L}_f(.) + \mathcal{L}_g(.) - \lambda \mathcal{L}_{MI}(.));$$

Datasets

- ATIS: flight reservations
 - Sentence-level intents and word-level slot tags
- SNIPS: voice assistants for multiple domains
 - Sentence-level intents and word-level slot tags
- E2E NLG: restaurant domain
 - Each meaning representation has up to 5 references in natural language and no intent labels

ATIS data: 5k examples in the flight booking domain

SNIPS data: voice assistants for multiple domains

E2E NLG data: 50k examples in the restaurant domain

✓ Connecting models via MMI between semantics and language is useful

Outline

- Background
- Duality Exploitation
 - Dual Supervised Learning
 - Joint Dual Learning
 - Dual Mutual Information Maximization
 - Dual Inference
 - Su et al., Findings in EMNLP 2020
 - Dual Finetuning (ongoing)
- Summary
- Related work

Inference Stage

Motivation

- Prior work utilized the duality in the training stage
- Due to current large-scaled NLP models, it is difficult/impractical to re-train models.
 - Exploiting the duality in the inference stage

Dual Inference for NLU / NLG

Normal inference process

Dual Inference for NLU / NLG

Inference with duality (Xia et al., 2017)

$$f(x) = \arg\max \{\log P(y \mid x; \theta_{x \to y})\}$$

$$\simeq \arg\max \{\alpha \log P(y \mid x; \theta_{x \to y}) + (1 - \alpha) \log P(y \mid x; \theta_{y \to x})\}$$

Estimated by forward model

Estimated by backward model

$$\log P(y \mid x; \theta_{y \to x})$$

$$= \log \left(\frac{P(x \mid y; \theta_{y \to x}) P(y; \theta_y)}{P(x; \theta_x)} \right)$$

$$= \log P(x \mid y; \theta_{y \to x}) + \log P(y; \theta_y) - \log P(x; \theta_x)$$

Dual Inference for NLU / NLG

$$\begin{split} f(x) &\simeq \arg\max\{\alpha \log P(y \mid x; \theta_{x \to y}) + & \text{forward model} \\ & (1-\alpha)(\log P(x \mid y; \theta_{y \to x}) + & \text{backward model} \\ & \log P(y; \theta_y) - \log P(x; \theta_x)) \} \end{split}$$

Marginal of y Marginal of x

Marginal Distribution Estimation

 Prior work uses MADE, treating semantics as a finite number of labels.

Considering scalability, we propose a non-autoregressive

masked-model.

E2E NLG data: 50k examples in the restaurant domain

E2E NLG data: 50k examples in the restaurant domain

59 Outline

- Background
- Duality Exploitation
 - Dual Supervised Learning
 - Joint Dual Learning
 - Dual Mutual Information Maximization
 - Dual Inference
 - Dual Finetuning

Finetuning Stage

- Summary
- Related work

Motivation

- Nowadays, finetuning pre-trained language models is often the first choice for a NLP problem.
- One model for two dual tasks.

GPT-2 (Radford et al., 2019)

- Generative Pre-trained Transformer 2
- Layered Transformer decoder blocks

"Language models are unsupervised multitask learners." Radford, et al. 2019

GPT-2 (Radford et al., 2019)

 Pretrained on WebText, which has over 8 million documents for a total of 40 GB of text

Masked Self-Attention

Language Modeling

Auto-regressive nature

Model both NLU and NLG as text generation

Objective Design

- How to enforce the model to execute the target task?
- Special task tokens

Objective Design

Language Modeling training

Inference

Let the model generate sequences auto-regressively

NLU/NLG Results on SNIPS

NLU/NLG Results on ATIS

Co-Training

- Train two tasks at one time
- Language modeling training

69

Performance Comparison (SNIPS)

✓ Co-training only works better with smaller models.

70

Outline

- Background
- Duality Exploitation
 - Dual Supervised Learning
 - Joint Dual Learning
 - Dual Mutual Information Maximization
 - Dual Inference
 - Dual Finetuning
- Summary
- Related work

71

Summary

- Dual Supervised Learning
 - Supervised Learning: duality loss as regularization term
- Joint Dual Learning

Training Stage

- Semi-supervised Learning: joint learning framework
- Dual Mutual Information Maximization
 - Supervised Learning + MMI: auxiliary MMI objective
- Dual Inference

Inference: enhanced inference process

Inference Stage

- Dual Finetuning
 - Finetuning: dual finetuning objectives

Finetuning Stage

Challenges

- Not every NLU data is suitable for augmenting into NLG data.
- NLU always requires human annotations, technically it is infeasible to perform "fully" unsupervised learning.
- Different relationships between tasks

Outline

- Background
- Duality Exploitation
 - Dual Supervised Learning
 - Joint Dual Learning
 - Dual Mutual Information Maximization
 - Dual Inference
 - Dual Finetuning
- Summary
- Related work

Semantic Parsing with Dual Learning

- Contemporaneous work focusing on semantic parsing
- Similar to our Joint Dual Learning

Latent Variable Model (Tseng et al., 2020)

 Coupling NLU and NLG with a latent variable representing the shared intent between natural language and formal representations

Pragmatically Text Generation

- Computational pragmatics: Listener vs Speaker
- The listener model and the base speaker model together define a pragmatic speaker

$$S_1^R(o\mid i) = L^R(i\mid o)^\lambda \cdot S_0(o\mid i)^{1-\lambda}$$

Similar to our Dual Inference

Thanks for your attention.

Appendix

Natural Language $\log \hat{P}(x)$

Language modeling

$$p(x) = \prod_{d}^{D} p(x_d \mid x_1, ..., x_{d-1})$$

Semantic Frame $\log \hat{P}(y)$

We treat NLU as a multi-label classification problem

Each label is a slot-value pair

RESTAURANT="McDonald's"
PRICE="cheap"
LOCATION= "nearby the station"

1

How to model the marginal distributions of y?

Straight-Through Estimator

 Directly using the gradients of discrete samples as the gradients of the distribution parameters.

Distribution as Input

 For NLU, we use the predicted distribution over the vocabulary from NLG to perform the weighted-sum of word embeddings.

 For NLG, the probability distribution of slot-value pairs predicted by NLU can directly serve as the input vector.

Dual Supervised Learning Results

Model	NLU	NLG				
Model	F1	BLEU	ROUGE-1	ROUGE-2	ROUGE-L	
Iterative training	71.14	55.05	55.37	27.95	39.90	
Dual Supervised Learning with $\lambda = 0.1$	72.32	57.16	56.37	29.19	40.44	
Dual Supervised Learning with $\lambda = 0.01$	72.08	55.07	55.56	28.42	40.04	
Dual Supervised Learning with $\lambda = 0.001$	71.71	56.17	55.90	28.44	40.08	
Dual Supervised Learning w/o MADE	70.97	55.96	55.99	28.74	39.98	

Joint Dual Learning Results

Model	NLU	NLG				
Model	F1	BLEU	ROUGE-1	ROUGE-2	ROUGE-L	
Iterative training	71.14	55.05	55.37	27.95	39.90	
Dual Supervised Learning	72.32	57.16	56.37	29.19	40.44	
Joint Training (Straight-Through)	71.73	55.19	55.16	27.45	39.33	
Joint Training (Distribution as Input)	80.03	55.34	56.17	28.48	39.24	
+ RL(BLEU+ROUGE, F1)	80.35	57.59	56.71	29.06	40.28	
+ RL(LM, MADE)	79.52	55.61	55.97	28.57	39.97	

MMI Results on ATIS

Model	NL	_U	NLG				
	Accuracy	F1	BLEU	ROUGE-1	ROUGE-2	ROUGE-L	
Iterative Baseline	85.98	96.28	16.71	37.11	13.47	35.88	
Dual Supervised Learning	83.02	94.73	16.72	37.89	14.60	36.52	
Joint Baseline	80.61	91.26	17.26	38.10	14.69	36.73	
+ MI(semantics, word)	88.15	93.75	24.46	42.92	23.01	41.78	
+ MI(semantics, sentence)	88.50	93.85	19.28	39.55	16.88	38.19	

MMI Results on SNIPS

Model	NL	_U	NLG				
	Accuracy	F1	BLEU	ROUGE-1	ROUGE-2	ROUGE-L	
Iterative Baseline	97.40	96.98	14.69	35.20	13.27	34.19	
Dual Supervised Learning	97.39	96.35	15.90	39.85	16.39	38.69	
Joint Baseline	97.32	94.56	17.19	38.59	16.36	37.53	
+ MI(semantics, word)	97.02	94.25	19.30	42.20	19.66	40.83	
+ MI(semantics, sentence)	96.93	95.42	16.82	39.06	16.45	37.75	

MMI Results on E2E NLG

Model	NL	_U	NLG				
	Accuracy	F1	BLEU	ROUGE-1	ROUGE-2	ROUGE-L	
Iterative Baseline	-	94.41	18.21	31.66	12.47	27.39	
Dual Supervised Learning	-	94.36	24.32	45.91	19.31	39.92	
Joint Baseline	-	92.69	24.47	45.41	19.22	39.10	
+ MI(semantics, word)	-	92.69	40.53	61.00	36.14	52.60	
+ MI(semantics, sentence)	-	92.64	28.21	49.52	23.18	41.63	

Dual Inference Results on ATIS

Model	NL	.U	NLG				
	Accuracy	F1	BLEU	ROUGE-1	ROUGE-2	ROUGE-L	
Iterative Baseline	84.10	94.26	16.08	35.10	11.94	33.73	
+ DualInf(α =0.5, β =0.5)	85.07	93.84	17.38	36.40	13.33	35.09	
+ DualInf(α*, β*)	85.57	94.63	16.16	35.19	11.93	33.75	
Dual Supervised Learning	82.98	94.85	16.98	38.83	15.56	37.50	
+ DualInf(α =0.5, β =0.5)	83.68	94.89	20.69	40.62	17.72	39.31	
+ DualInf(α*, β*)	84.26	95.32	17.05	38.82	15.57	37.42	
Joint Baseline	81.44	90.37	21.00	39.70	18.91	38.48	
+ DualInf(α =0.5, β =0.5)	81.21	88.42	22.60	41.19	20.24	39.88	
+ DualInf(α*, β*)	85.88	90.66	20.67	39.41	18.68	38.16	

Dual Inference Results on SNIPS

Model	NL	.U	NLG			
	Accuracy	F1	BLEU	ROUGE-1	ROUGE-2	ROUGE-L
Iterative Baseline	96.58	96.67	15.49	34.32	13.75	33.26
+ DualInf(α =0.5, β =0.5)	97.07	96.70	16.90	35.43	15.18	34.41
+ DualInf(α*, β*)	96.88	96.76	15.46	34.21	13.78	33.14
Dual Supervised Learning	96.83	96.71	15.96	36.69	15.39	35.73
+ DualInf(α =0.5, β =0.5)	96.88	96.80	18.07	37.63	16.75	36.67
+ DualInf(α*, β*)	95.34	96.68	16.08	36.97	15.62	36.04
Joint Baseline	97.18	94.57	17.15	36.32	15.68	35.36
+ DualInf(α =0.5, β =0.5)	97.27	95.59	18.56	37.87	17.25	36.90
+ DualInf(α*, β*)	95.54	96.06	18.26	38.16	17.70	37.40

Dual Inference Results on E2E NLG

Model	NL	_U	NLG				
Wiodei	Accuracy	F1	BLEU	ROUGE-1	ROUGE-2	ROUGE-L	
Iterative Baseline	-	94.25	24.98	44.60	19.40	37.99	
+ DualInf(α =0.5, β =0.5)	-	94.29	25.34	44.82	19.73	38.23	
+ DualInf(α*, β*)	-	94.55	25.35	44.87	19.74	38.30	
Dual Supervised Learning	-	94.49	24.73	45.74	19.60	39.91	
+ DualInf(α =0.5, β =0.5)	-	94.53	25.40	46.25	20.18	40.42	
+ DualInf(α*, β*)	-	94.47	24.67	45.71	19.56	39.88	
Joint Baseline	-	93.51	25.19	44.80	19.59	38.20	
+ DualInf(α =0.5, β =0.5)	-	93.43	25.57	45.11	19.90	38.56	
+ DualInf(α*, β*)	-	93.88	25.54	45.17	19.89	38.61	

Transformer

Multi-Head Attention

