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Abstract

In modular dialogue systems, natural language
understanding (NLU) and natural language
generation (NLG) are two critical components,
where NLU extracts the semantics from the
given texts and NLG is to construct corre-
sponding natural language sentences based on
the input semantic representations. However,
the dual property between understanding and
generation has been rarely explored. The prior
work (Su et al., 2019) is the first attempt that
utilized the duality between NLU and NLG to
improve the performance via a dual supervised
learning framework. However, the prior work
still learned both components in a supervised
manner, instead, this paper introduces a gen-
eral learning framework to effectively exploit
such duality, providing flexibility of incorpo-
rating both supervised and unsupervised learn-
ing algorithms to train language understanding
and generation models in a joint fashion. The
benchmark experiments demonstrate that the
proposed approach is capable of boosting the
performance of both NLU and NLG.1

1 Introduction

Spoken dialogue systems that assist users to solve
complex tasks such as booking a movie ticket have
become an emerging research topic in artificial in-
telligence and natural language processing areas.
With a well-designed dialogue system as an intel-
ligent personal assistant, people can accomplish
certain tasks more easily via natural language inter-
actions. Nowadays, there are several virtual intelli-
gent assistants, such as Apple’s Siri, Google Assis-
tant, Microsoft’s Cortana, and Amazon’s Alexa.

The recent advance of deep learning has inspired
many applications of neural dialogue systems (Wen
et al., 2017; Bordes et al., 2017). A typical dia-
logue system pipeline can be divided into several

1The source code is available at: https://github.
com/MiuLab/DuaLUG.

components: a speech recognizer that transcribes
a user’s speech input into texts, a natural language
understanding module (NLU) to classify the do-
main along with domain-specific intents and fill in
a set of slots to form a semantic frame (Tur and
De Mori, 2011; Hakkani-Tür et al., 2016). A di-
alogue state tracking (DST) module predicts the
current dialogue state according to the multi-turn
conversations, then the dialogue policy determines
the system action for the next turn given the current
dialogue state (Peng et al., 2018; Su et al., 2018a).
Finally, the semantic frame indicating the policy
is fed into a natural language generationt (NLG)
module to construct a response utterance to the
user (Wen et al., 2015b; Su et al., 2018b).

Generally, NLU is to extract core semantic con-
cepts from the given utterances, while NLG is to
construct corresponding sentences based on the
given semantic representations. However, the dual
property between understanding and generation
has been rarely investigated, Su et al. (2019) first
introduced the duality into the typical supervised
learning schemes to train these two models. Dif-
ferent from the prior work, this paper proposes a
general learning framework leveraging the duality
between understanding and generation, providing
flexibility of incorporating not only supervised but
also unsupervised learning algorithms to jointly
train NLU and NLG modules. The contributions
can be summarized as 3-fold:
• This paper proposes a general learning frame-

work using the duality between NLU and
NLG, where supervised and unsupervised
learning can be flexibly incorporated for joint
training.
• This work is the first attempt to exploits the

dual relationship between NLU and NLG to-
wards unsupervised learning.
• The benchmark experiments demonstrate the

effectiveness of the proposed framework.

https://github.com/MiuLab/DuaLUG
https://github.com/MiuLab/DuaLUG


2 Related Work

This paper focuses on modeling the duality be-
tween understanding and generation towards un-
supervised learning of the two components, related
work is summarized below.

Natural Language Understanding In dialogue
systems, the first component is a natural language
understanding (NLU) module—parsing user utter-
ances into semantic frames that capture the core
meaning (Tur and De Mori, 2011). A typical NLU
first determines the domain given input utterances,
predicts the intent, and then fill the associated
slots (Hakkani-Tür et al., 2016; Chen et al., 2016).
However, the above work focused on single-turn
interactions, where each utterance is treated inde-
pendently. To overcome the error propagation and
further improve understanding performance, con-
textual information has been leveraged and shown
useful (Chen et al., 2015; Sun et al., 2016; Shi
et al., 2015; Weston et al., 2015). Also, differ-
ent speaker roles provided informative signal for
capturing speaking behaviors and achieving better
understanding performance (Chen et al., 2017; Su
et al., 2018c).

Natural Language Generation NLG is another
key component in dialogue systems, where the goal
is to generate natural language sentences condi-
tioned on the given semantics from the dialogue
manager. As an endpoint of interacting with users,
the quality of generated sentences is crucial for
better user experience. In spite of robustness and
adequacy of the rule-based methods, poor diver-
sity makes talking to a template-based machine
unsatisfactory. Furthermore, scalability is an issue,
because designing sophisticated rules for a specific
domain is time-consuming. Previous work pro-
posed a RNNLM-based NLG that can be trained
on any corpus of dialogue act-utterance pairs with-
out hand-crafted features and any semantic align-
ment (Wen et al., 2015a). The following work
based on sequence-to-sequence (seq2seq) models
further obtained better performance by employing
encoder-decoder structure with linguistic knowl-
edge such as syntax trees (Sutskever et al., 2014;
Su et al., 2018b).

Dual Learning Various tasks may have diverse
goals, which are usually independent to each other.
However, some tasks may hold a dual form, that is,
we can swap the input and target of a task to formu-

late another task. Such structural duality emerges
as one of the important relationship for further in-
vestigation. Two AI tasks are of structure duality if
the goal of one task is to learn a function mapping
from space X to Y , while the others goal is to learn
a reverse mapping from Y and X . Machine trans-
lation is an example (Wu et al., 2016), translation
from English to Chinese has a dual task, which
is translated from Chinese to English; the goal of
automatic speech recognition (ASR) is opposite
to the one of text-to-speech (TTS) (Tjandra et al.,
2017), and so on. Previous work first exploited the
duality of the task pairs and proposed supervised
(Xia et al., 2017) and unsupervised (reinforcement
learning) (He et al., 2016) learning frameworks.
These recent studies magnified the importance of
the duality by revealing exploitation of it could
boost the learning of both tasks. Su et al. (2019)
employed the dual supervised learning framework
to train NLU and NLG and improve both mod-
els simultaneously. Recently, Shen et al. (2019)
improved models for conditional text generation
using techniques from computational pragmatics.
The techniques formulated language production as
a game between speakers and listeners, where a
speaker should generate text which a listener can
use to correctly identify the original input the text
describes.

However, although the duality has been consid-
ered into the learning objective, two models in pre-
vious work are still trained separately. In contrast,
this work proposes a general learning framework
that trains the models jointly, so that unsupervised
learning methods in this research field can be better
explored.

3 Proposed Framework

In this section, we describe the problem formula-
tion and the proposed learning framework, which
is illustrated in Figure 1.

3.1 Problem Formulation

The problems we aim to solve are NLU and NLG;
for both tasks, there are two spaces: the semantics
space X and the natural language space Y . NLG is
to generate sentences associated with the given se-
mantics, where the goal is to learn a mapping func-
tion f : X → Y that transforms semantic represen-
tations into natural language. On the other hand,
NLU is to capture the core meaning of sentences,
where the goal is to find a function g : Y → X that
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Figure 1: Left: The proposed joint dual learning framework, which comprises Primal Cycle and Dual Cycle.
The framework is agnostic to learning objectives and the algorithm is detailed in Algorithm 1. Right: In our
experiments, the models for NLG and NLU are a GRU unit accompanied with a fully-connected layer.

predicts semantic representations from the given
natural language.

Given n data pairs {(xi, yi)}ni=1 i.i.d. sampled
from the joint space X × Y . A typical strategy for
the optimization problem is based on maximum
likelihood estimation (MLE) of the parameterized
conditional distribution by the trainable parameters
θx→y and θy→x as below:

f(x; θx→y) = argmax
θx→y

P (y | x; θx→y),

g(y; θy→x) = argmax
θy→x

P (x | y; θy→x).

The E2E NLG challenge dataset (Novikova et al.,
2017)2 is adopted in our experiments, which is
a crowd-sourced dataset of 50k instances in the
restaurant domain. Each instance is a pair of a
semantic frame containing specific slots and cor-
responding values and a associated natural lan-
guage utterance with the given semantics. For
example, a semantic frame with the slot-value
pairs “name[Bibimbap House], food[English],
priceRange[moderate], area [riverside], near
[Clare Hall]” corresponds to the target sentence
“Bibimbap House is a moderately priced restaurant
who’s main cuisine is English food. You will find
this local gem near Clare Hall in the Riverside
area.”. Although the original dataset is for NLG,
of which the goal is to generate sentences based on
the given slot-value pairs, we further formulate the
NLU task as predicting slot-value pair based on the
utterances, which can be viewed as a multi-label
classification problem and each possible slot-value

2http://www.macs.hw.ac.uk/
InteractionLab/E2E/

pair is treated as an individual label. The formula-
tion is similar to the prior work (Su et al., 2019).

3.2 Joint Dual Learning
Although previous work has introduced the learn-
ing schemes that exploit duality of AI tasks, most
of it was based on reinforcement learning or stan-
dard supervised learning and the models of primal
and dual tasks (f and g respectively) are trained
separately. Intuitively, if the models of primal and
dual tasks are optimally learned, a complete cycle
of transforming data from the original space to an-
other space then back to the original space should
be exactly the same as the original data, which
could be viewed as the ultimate goal of a dual prob-
lem. In our scenario, if we generate sentences from
given semantics x via the function f and transform
them back to the original semantics perfectly via
the function g, it implies that our generated sen-
tences are grounded to the original given semantics
and has the mathematical condition:

g(f(x)) ≡ x.

Therefore, our objective is to achieve the perfect
complete cycle of data transforming by training two
dual models (f and g) in a joint manner.

3.2.1 Algorithm Description
As illustrated in Figure 1, the framework is com-
posed of two parts: Primal Cycle and Dual Cycle.
Primal Cycle starts from semantic frames x, (1)
first transforms the semantic representation to sen-
tences by the function f , (2) then computes the
loss by the given loss function l1, (3) predicts the
semantic meaning from the generated sentences,

http://www.macs.hw.ac.uk/InteractionLab/E2E/
http://www.macs.hw.ac.uk/InteractionLab/E2E/


Algorithm 1 Joint dual learning algorithm
1: Input: a mini-batch of n data pairs {(xi, yi)}ni=1, the function of the primal task f , the function of the dual task g, the loss

function for the primal task l1(.), the loss function for the dual task l2(.), and the learning rates γ1, γ2;
2: repeat
3: Start from data x, transform x by function f : f(xi; θx→y); . Primal Cycle
4: Compute the loss by l1(.);
5: Transform the output of the primal task by function g: g(f(xi; θx→y); θy→x);
6: Compute the loss by l2(.);
7: Update model parameters:
8: θx→y ← θx→y - γ1∇θx→y (

∑n
i=1[l1(f(xi; θx→y)) + l2(g(f(xi; θx→y); θy→x))]);

9: θy→x← θy→x - γ2∇θy→x(
∑n
i=1[l2(g(f(xi; θx→y); θy→x))]);

10: Start from data y, transform y by function g: g(yi; θy→x); . Dual Cycle
11: Compute the loss by l2(.);
12: Transform the output of the dual task by function f : f(g(yi; θy→x); θx→y);
13: Compute the loss by l1(.);
14: Update model parameters:
15: θy→x← θy→x - γ2∇θy→x(

∑n
i=1[l2(g(yi; θy→x)) + l1(f(g(yi; θy→x); θx→y))]);

16: θx→y ← θx→y - γ1∇θx→y (
∑n
i=1[l1(f(g(yi; θy→x); θx→y))]);

17: until convergence

(4) computes the loss by the given loss function
l2, (5) finally train the models based on the com-
puted loss; Dual Cycle starts from utterances and is
symmetrically formulated. The learning algorithm
is described in Algorithm 1, which is agnostic to
types of learning objective. Either a supervised
learning objective or an unsupervised learning ob-
jective can be conducted at the end of the training
cycles, and the whole framework can be trained in
an end-to-end manner.

3.3 Learning Objective

As the language understanding task in our experi-
ments is to predict corresponding slot-value pairs
of utterances, which is a multi-label classification
problem, we utilized the binary cross entropy loss
as the supervised objective function for NLU. Like-
wise, the cross entropy loss function is used as the
supervised objective for NLG. Take NLG for ex-
ample, the objective of the model is to optimize the
conditional probability of predicting word tokens
given semantics p(y | x), so that the difference
between the predicted distribution and the target
distribution, q(y | x), can be minimized:

−
n∑∑

y

q(y | x) log p(y | x), (1)

where n is the number of samples.
On the other hand, we can also introduce the

reinforcement learning objective into our frame-
work, the objective aims to maximize the expected
value of accumulated reward. In our experiments,
we conduct policy gradient (REINFORCE) method
(Sutton et al., 2000) for optimization, the gradient

could be written as:

∇E[r] = E[r(y)∇ log p(y | x)], (2)

where the variety of reward r will be elaborated in
the next section. The loss function l1 for both tasks
could be (1), (2), and the combination of them.

3.4 Reward Function
Different types of rewards reflect various objec-
tives and would result in different behaviors in the
learned policy. Hence, we design various reward
functions to explore the model behavior, including
explicit and implicit feedback.

3.4.1 Explicit Reward
To evaluate the quality of generated sentences, two
explicit reward functions are adopted.

Reconstruction Likelihood In our scenario, if
we generate sentences based on given semantics x
by the function f and could transform them back
to the original semantics perfectly by the function
g, it implies our generated sentences ground on
the original given semantics. Therefore we use the
reconstruction likelihood at the end of the training
cycles as a reward function:{

log p(x | f(xi; θx→y); θy→x) Primal,
log p(y | g(yi; θy→x); θx→y) Dual.

Automatic Evaluation Score The goal of most
NLP tasks is to predict word tokens correctly, so
the loss functions used to train these models fo-
cus on the word level, such as cross entropy max-
imizing the continuous probability distribution of
the next correct word given the preceding context.



However, the performance of these models is typi-
cally evaluated using discrete metrics. For instance,
BLEU and ROUGE measure n-gram overlaps be-
tween the generated outputs and the reference texts.
In order to enforce our NLG to generate better
results in terms of the evaluation metrics, we uti-
lize these automatic metrics as rewards to provide
the sentence-level information. Moreover, we also
leverge F-score in our NLU model to indicate the
understanding performance.

3.4.2 Implicit Reward
In addition to explicit signals like reconstruction
likelihood and the automatic evaluation metrics, a
“softer” feedback signal may be informative. For
both tasks, we design model-based methods esti-
mating data distribution in order to provide such
soft feedback.

Language Model For NLG, we utilize pre-
trained language models which estimate the whole
data distribution to compute the joint probability of
generated sentences, measuring their naturalness
and fluency. In this work, we use a simple lan-
guage model based on RNN (Mikolov et al., 2010;
Sundermeyer et al., 2012). The language model is
learned by a cross entropy objective in an unsuper-
vised manner:

p(y) =

L∏
i

p(yi | y1, ..., yi−1; θy), (3)

where y(·) are the words in a sentence y, and L is
the length of the utterance.

Masked Autoencoder for Distribution Estima-
tion (MADE) For NLU, the output contains a set
of discrete labels, which do not fit the sequential
model scenarios such as language models. Each
semantic frame x in our work contains the core
concept of a certain sentence, furthermore, the slot-
value pairs are not independent to others, because
they correspond to the same individual utterance.
For example, McDonald’s would probably be inex-
pensive; therefore the correlation should be taken
into account when estimating the joint distribution.

Following Su et al. (2019), we measure the soft
feedback signal for NLU using masked autoen-
coder (Germain et al., 2015) to estimate the joint
distribution. By interrupting certain connections
between hidden layers, we could enforce the vari-
able unit xd to only depend on any specific set
of variables, not necessary on x<d; eventually we

could still have the joint distribution by product
rule:

p(x) =

D∏
d

p(xd | Sd),

where d is the index of variable unit, D is the total
number of variables, and Sd is a specific set of vari-
able units. Because there is no explicit rule specify-
ing the exact dependencies between slot-value pairs
in our data, we consider various dependencies by
ensembles of multiple decomposition by sampling
different sets Sd and averaging the results.

3.5 Flexibility of Learning Scheme
The proposed framework provides various flexibil-
ity of designing and extending the learning scheme,
described as follows.

Straight-Through Estimator In many NLP
tasks, the learning targets are discrete, so the goals
of most NLP tasks are predicting discrete labels
such as words. In practice we perform argmax
operations on the output distribution from learned
models to select the most possible candidates. How-
ever, such operation does not have any gradient
value, forbidding the networks be trained via back-
propagation. Therefore, it is difficult to directly
connect a primal task (NLU in our scenario) and a
dual task (NLG in our scenario) and jointly train
these two models due to the above issue.

The Straight-Through (ST) estimator (Bengio
et al., 2013) is a widely applied method due to its
simplicity and effectiveness. The idea of Straight-
Through estimator is directly using the gradients of
discrete samples as the gradients of the distribution
parameters. Because discrete samples could be
generated as the output of hard threshold functions
or some operations on the continuous distribution,
Bengio et al. (2013) explained the estimator by
setting the gradients of hard threshold functions
to 1. In this work, we introduce ST estimator for
connecting two models, and therefore the gradient
can be estimated and two models can be jointly
trained in an end-to-end manner.

Distribution as Input In addition to employing
the Straight-Through estimator, an alternative solu-
tion is to use continuous distribution as the input of
models. For NLU, the inputs are the word tokens
from NLG, so we use the predicted distribution
over the vocabulary to perform the weighted-sum
of word embeddings. For NLG, the model requires
semantic frame vectors predicted by NLU as the



input condition; in this case, the probability distri-
bution of slot-value pairs predicted by NLU can
directly serve as the input vector. By utilizing the
output distribution in this way, two models can be
trained jointly in an end-to-end fashion.

Hybrid Objective As described before, the pro-
posed approach is agnostic to learning algorithms;
in other words, we could apply different learning
algorithms at the middle and end of the cycles. For
example, we could apply supervised learning on
NLU in the first half of Primal Cycle and reinforce-
ment learning on NLG to form a hybrid training
cycle. Because two models are trained jointly, the
objective applied on one model would potentially
impact on the behavior of the other. Furthermore,
we could also apply multiple objective functions
including supervised or unsupervised ones to for-
mulate multi-objective learning schemes.

Towards Unsupervised Learning Because the
whole framework can be trained jointly and propa-
gate the gradients, we could apply only one objec-
tive in one learning cycle at the end of it. Specif-
ically, in Algorithm 1, we can apply only l2 in
line 8 and only l1 in line 15. Such flexibility po-
tentially enables us to train the models based on
unpaired data in a unsupervised manner. For exam-
ple, sample unpaired data x and transform the data
by function f , next, feed them into the function g,
then compare the predicted results and the original
input to compute the loss. Likewise, we can per-
form the training cycle symmetrically from y. It
is also possible to utilize limited data and perform
the autoencoding cycle described above to apply
semi-supervised learning.

4 Experiments

Our models are trained on the official training set
and verified on the official testing set of the E2E
NLG challenge dataset (Novikova et al., 2017).
The data preprocessing includes trimming punctua-
tion marks, lemmatization, and turning all words
into lowercase. Each possible slot-value pair is
treated as an individual label and the total number
of labels is 79. To evaluate the quality of the gener-
ated sequences regarding both precision and recall,
for NLG, the evaluation metrics include BLEU and
ROUGE (1, 2, L) scores with multiple references,
while F1 measure is reported for evaluating NLU.

4.1 Model

The proposed framework and algorithm are agnos-
tic to model structures. In our experiments, we use
a gated recurrent unit (GRU) (Cho et al., 2014)
with fully-connected layers at ends of GRU for
both NLU and NLG, which are illustrated in the
right part of Figure 1. Thus the models may have
semantic frame representation as initial and final
hidden states and sentences as the sequential in-
put. In all experiments, we use mini-batch Adam
as the optimizer with each batch of 64 examples.
10 training epochs were performed without early
stop, the hidden size of network layers is 200, and
word embedding is of size 50.

4.2 Results and Analysis

The experimental results are shown in Table 1, each
reported number is averaged on the official testing
set from three turns. Row (a) is the baseline where
NLU and NLG models are trained independently
and separately by supervised learning. The best
performance in (Su et al., 2019) is reported in row
(b), where NLU and NLG are trained separately
by supervised learning with regularization terms
exploiting the duality.

To overcome the issue of non-differentiability,
we introduce Straight-Through estimator when con-
necting two tasks. Based on our framework, an-
other baseline for comparison is to train two models
jointly by supervised loss and straight-through es-
timators, of which the performance is reported in
row (c). Specifically, the cross entropy loss (1) is
utilized in both l1 and l2 in Algorithm 1. Because
the models in the proposed framework are trained
jointly, the gradients are able to flow through the
whole network thus two models would directly in-
fluence learning of each other. Rows (d)-(f) show
the ablation experiments for exploring the interac-
tion between two models (f and g). For instance,
row (e) does not use ST at the output of the NLU
module; instead, we feed continuous distribution
over slot-value labels instead of discrete semantic
frames into NLG as the input. Instead of discrete
word labels, row (d) and row (f) feed weighted
sum over word embeddings based on output dis-
tributions. Since the goal of NLU is to learn a
many-to-one function, considering all possibility
would potentially benefit learning (row (d)-(f)).

On the contrary, the goal of NLG is to learn a
one-to-many function, applying the ST estimator
at the output of NLU only rather than both sides



Learning Scheme NLU NLG
Micro-F1 BLEU ROUGE-1 ROUGE-2 ROUGE-L

(a) Iterative training (supervised) 71.14 55.05 55.37 27.95 39.90
(b) Dual supervised learning (Su et al., 2019) 72.32 57.16 56.37 29.19 40.44
(c) Joint training (Straight-Through) 71.73 55.19 55.16 27.45 39.33
(d) (c) + (NLG w/ distribution) 73.22 55.18 55.35 27.81 39.36
(e) (c) + (NLU w/ distribution) 79.19 51.47 53.62 26.17 37.90
(f) (c) + (NLU and NLG w/ distribution) 80.03 55.34 56.17 28.48 39.24
(g) (f) + RLmid(reconstruction likelihood) 80.07 55.32 56.12 28.07 39.59
(h) (f) + RLend(reconstruction likelihood) 79.97 55.21 56.15 28.50 39.42
(i) (f) + RLmid(BLEU+ROUGE, F1) 79.49 56.04 56.61 28.78 39.93
(j) (f) + RLend(BLEU+ROUGE, F1) 80.35 57.59 56.71 29.06 40.28
(k) (f) + RLmid(LM, MADE) 81.52 54.13 54.60 26.85 38.90
(l) (f) + RLend(LM, MADE) 79.52 55.61 55.97 28.57 39.97

Table 1: The NLU performance reported on micro-F1 and the NLG performance reported on BLEU, ROUGE-1,
ROUGE-2, and ROUGE-L of models (%).

degrades the performance of generation (row (e)).
However, this model achieves unexpected improve-
ment in understanding by over 10%, the reason
may be the following. The semantics representa-
tion is very compact, a slight noise in the semantics
space would possibly result in a large difference
in the target space and a totally different semantic
meaning. Hence the continuous distribution over
slot-value pairs may potentially cover the unseen
mixture of semantics and further provide rich gra-
dient signals. This could also be explained from
the perspective of data augmentation. Moreover,
connecting two models with continuous distribu-
tion at both joints further achieves improvement
in both NLU and NLG (row (f)). Although row
(f) performs best in our experiments and dataset,
as most AI tasks are classification problems, the
proposed framework with ST estimators provides a
general way to connect two tasks with duality. The
proposed methods also significantly outperform
the previously proposed dual supervised learning
framework (Su et al., 2019) on F1 score of NLU
and BLEU score of NLG, demonstrating the benefit
of learning NLU and NLG jointly.

4.3 Investigation of Hybrid Objectives

The proposed framework provides the flexibility of
applying multiple objectives and different types of
learning methods. In our experiments, apart from
training two models jointly by supervised loss, rein-
forcement learning objectives are also incorporated
into the training schemes (row (g)-(l)). The ulti-
mate goal of reinforcement learning is to maximize
the expected reward (equation (2)). In the proposed

dual framework, if we take expectation over differ-
ent distribution, it would reflect a different physical
meaning. For instance, if we receive a reward at the
end of Primal Cycle and the expectation is taken
over the output distribution of NLG (middle) or
NLU (end), the derivatives of objective functions
would differ:{

E[ri∇ log p(yi | x; θx→y)] RLmid,
E[ri∇ log p(xi | f(x; θx→y); θy→x)] RLend.

The upper one (RLmid) assesses the expected re-
ward earned by the sentences constructed by the
policy of NLG, which is a direct signal for the pri-
mal task NLG. The lower one (RLend) estimates
the expected reward earned by the predicted se-
mantics by the policy of NLU based on the state
predicted by NLG, such reward is another type of
feedback.

In the proposed framework, the models of two
tasks are trained jointly, thus an objective function
will simultaneously influence the learning of both
models. Different reward designs could guide re-
inforcement learning agents to different behaviors.
To explore the impact of reinforcement learning
signal, various rewards are applied on top of the
joint framework (row (f)):

1. token-level likelihood (rows (g) and (h)),
2. sentence/frame-level automatic evaluation

metrics (rows (i) and (j)),
3. corpus-level joint distribution estimation

(rows (k) and (l)).
In other words, the models in rows (g)-(l) have
both supervised and reinforcement learning signal.
The results show that token-level feedback may not



Baseline Proposed
x area[riverside], eatType[pub], name[blue spice]
y at the riverside there is a pub called the blue spice

f(x; θx→y) blue spice is a pub in riverside that has a price
range of more than 30e

in riverside there is a pub called blue spice

g(f(x; θx→y); θy→x)) area[city centre], customer rating[5 out of 5],
priceRange[more than 30], priceRange[cheap],
name[blue spice], name[the vaults]

area[riverside], eatType[pub], name[blue spice]

Table 2: An example of Primal Cycle, where the baseline model is row (a) in Table 1.

Baseline Proposed
y blue spice is a family friendly pub located in the city centre it serves chinese food and is near the

rainbow vegetarian cafe
x familyFriendly[yes], area[city centre], eatType[pub], food[chinese], name[blue spice],

near[rainbow vegetarian cafe]
g(y; θy→x)) familyFriendly[yes], food:[chinese] familyFriendly[yes], area[city centre],

eatType[pub], priceRange[moderate],
food[chinese], name[blue spice]

f(g(y; θy→x)); θx→y) the chinese restaurant the twenty two is a family
friendly restaurant

the chinese restaurant the blue spice is located
in the city centre it is moderately priced and kid
friendly

Table 3: An example of Dual Cycle, where the baseline model is row (a) in Table 1.

provide extra guidance (rows (g) and (h)), directly
optimizing towards the evaluation metrics at the
testing phase benefits learning in both tasks and
performs best (rows (i) and (j)), and the models uti-
lizing learning-based joint distribution estimation
also obtain improvement (row (k)). In sum, the ex-
plicit feedback is more useful for boosting the NLG
performance, because the reconstruction and auto-
matic scores directly reflect the generation quality.
However, the implicit feedback is more informa-
tive for improving NLU, where MADE captures
the salient information for building better NLU
models. The results align well with the finding in
Su et al. (2019).

4.4 Qualitative Analysis

Table 2 and 3 show the selected examples of the
proposed model and the baseline model in Primal
and Dual Cycle. As depicted in Algorithm 1, Pri-
mal Cycle is designed to start from semantic frames
x, then transform the representation by the NLG
model f , finally feed the generated sentences into
the NLU model g and compare the results with
the original input to compute loss. In the exam-
ple of Primal Cycle (Table 2), we can find that
f(g(y; θy→x)); θx→y) equals x, which means the
proposed method can successfully restore the origi-
nal semantics. On the other hand, Dual Cycle starts
from natural language utterances, from the gener-
ated results (Table 3) we can find that our proposed
method would not lose semantic concepts in the
middle of the training cycle (g(y; θy→x)) ↔ x).
Based on the qualitative analysis, we can find that

by considering the duality into the objective and
jointly training, the proposed framework can im-
prove the performance of NLU and NLG simulta-
neously.

5 Future Work

Though theoretically sound and empirically vali-
dated, the formulation of the proposed framework
depends on the characteristics of data. Not ev-
ery NLU dataset is suitable for being used as a
NLG task, vice versa. Moreover, though the pro-
posed framework provides possibility of training
the two models in a fully-unsupervised manner, it is
found unstable and hard to optimize from our exper-
iments. Thus, better dual learning algorithms and
leveraging pretrained models and other learning
techniques like adversarial learning are worth ex-
ploring to improve our framework, we leave these
in our future work.

6 Conclusion

This paper proposes a general learning framework
leveraging the duality between language under-
standing and generation, providing flexibility of
incorporating supervised and unsupervised learn-
ing algorithm to jointly train two models. Such
framework provides a potential method towards un-
supervised learning of both language understand-
ing and generation models by considering their
data distribution. The experiments on benchmark
dataset demonstrate that the proposed approach is
capable of boosting the performance of both NLU
and NLG models.
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