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ABSTRACT

Amortized variational inference (AVI) enables efficient training of
deep generative models to scale to large datasets. The quality of the
approximate inference is determined by various reasons, such as the
ability of producing proper variational parameters for each datapoint
in the recognition network and whether the variational distribution
matches the true posterior, etc. This paper focuses on the inference
sub-optimality of variational auto-encoders (VAE), where the goal is
to reduce the difference caused by amortizing the variational distri-
bution parameters over the entire training set instead of optimizing
for each training example individually, which is also known as the
amortization gap. This paper extends Bayesian inference in VAE
from the latent level to both latent and weight levels by adopting
Bayesian neural networks (BNN) in the encoder, so that each dat-
apoint obtains its own distribution for better modeling. The hybrid
design in the proposed compound VAE is empirically demonstrated
to be capable of mitigating the amortization gap.

Index Terms— VAE, Variational Inference, Bayesian

1. INTRODUCTION

Recently, generative models have drawn huge attention from the
artificial intelligence community by great success in various tasks.
Variational auto-encoders (VAE) [1], generative adversarial net-
works (GAN) [2] and their variants have been proposed and widely
studied. These generative models have achieved huge success in
many tasks, such as unconditional or conditional image synthesis
[3, 4], image-to-image translation [5], speech synthesis [6], and
etc. Among them, the family of VAE models [7, 8] has the elegant
design combining a directed graphical model and a deep learning
framework for modeling the joint distribution between the data and
a set of hidden variables that capture latent factors of variation.

Direct optimization and inference are intractable, so varia-
tional inference (VI) provides a framework to optimize a surrogate
and tractable distribution to approximate the intractable true poste-
rior [9]. The amortized variant of VI (AVI) for VAE is popular for its
feasibility and training efficiency. Previous work [10] investigated
inference suboptimality in VAE: the mismatch between the true and
approximate posterior. One of the suboptimality is the difference
resulting from amortizing variational parameters over the whole
training dataset instead of optimizing an individual parameter for
each datapoint, called Amortization Gap illustrated in Figure 1.

Traditional deep learning techniques used for supervised learn-
ing lack the ability of measuring uncertainty in the training and infer-
ence processes. It becomes an issue when the trained model encoun-
ters a scenario where the real data distribution differs a lot from the
distribution of training data; when exposed to data outside the distri-
bution it was trained on, the networks may be forced to extrapolate,
leading to an unpredictable behavior. Bayesian methods provide a
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Fig. 1. Gaps in inference.

principled way to model uncertainty by learning the posterior dis-
tribution over model parameters [11, 12], which have attempted to
extend neural networks into a Bayesian setting. While Bayesian neu-
ral networks (BNN) have been studied for decades, unfortunately,
BNNs could not scale well and struggle to adapt into modern deep
learning architectures. Incorporating the Bayesian framework into
deep learning has become a popular topic in machine learning.

Prior work [13, 14] developed a practical solution to obtain un-
certainty estimates by incorporating dropout techniques into train-
ing in typical deep neural networks as a Bayesian approximation of
a Gaussian process; it provided theoretical and empirical evidence
showing that any network trained with dropout is an approximate
Bayesian model, and uncertainty estimates can be obtained by com-
puting the variance on multiple predictions with different dropout
masks. While the prior work attempted at incorporating the Bayesian
framework in deep learning, none of them introduced BNN into
VAE to extend the Bayesian inference to weight distribution mod-
eling (weight level). In addition, considering that the prior work
[15] showed that training a deep network using batch normalization
is equivalent to approximate inference in Bayesian models, this pa-
per focuses on estimating the model uncertainty without modifying
network architectures or training procedure.

In this paper, we propose a new variant of Bayesian neural net-
works, dynamic Bayesian neural networks (DBNN), which models
the distribution over the distribution of variational parameters based
on input signals; considering the characteristics of Bayesian neu-
ral networks–modeling distribution over model parameters with a
sampling procedure during inference, we further propose a brand
new variant of VAE by incorporating DBNN, batch normalization,
and various techniques, called compound variational auto-encoders.
The contributions are summarized below:
• This paper proposes a new variant of Bayesian neural net-

works, dynamic Bayesian neural networks (DBNN), which
models the distribution over the distribution of variational pa-
rameters based on input signals.

• A brand new variant of VAE by incorporating DBNN, batch
normalization, and various techniques, called compound vari-
ational auto-encoders is also proposed.

• The proposed framework is empirically validated to have a
narrower amortization gap than the vanilla VAE.
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Fig. 2. The model illustration of the proposed compound variational auto-encoder.

2. COMPOUND VARIATIONAL AUTO-ENCODER

One of the inference sub-optimality in VAE, the amortization gap,
comes from optimizing model parameters φ over the whole dataset
instead of assigning and optimizing individual parameters for each
individual datapoint. An intuitive approach is to extend static deep
neural networks to networks with dynamic parameters. Following
the idea, we incorporate Bayesian neural networks into the encoder
of VAE, named compound variational auto-encoder. The proposed
compound VAE is illustrated in Figure 2.

2.1. Improved Variational Learning Objective

To derive the learning objective of the proposed model, first, we de-
fine the joint generative distribution pθ(x, z, w) and the inference
distribution qφ(z, w | x):

pθ(x, z, w) = pθ(z | w)pθ(w)pθ(x | z, w), (1)
qφ(z, w | x) = qφ(z | w, x)qφ(w | x), (2)

where z is the latent representation of VAE,w is the weights of BNN,
and x is the input datapoint. In the variational inference approach,
the goal is to find the parameters φ and θ that minimize KL diver-
gence between the approximate distribution and the true posterior:

DKL(qφ(z, w | x) ‖ pθ(z, w | x)) (3)
= Eqφ(z,w|x)[logqφ(z, w | x)− logpθ(z, w | x)]
= Eqφ(z,w|x)[log qφ(z, w | x)− log pθ(z, w, x)] + log pθ(x).

Minimizing the first expectation term is equal to maximizing the
likelihood, so it can be expanded by (1) and (2):

Eqφ(z,w|x)[log qφ(z, w | x)− log pθ(z, w, x)] (4)

=Eqφ(z,w|x)[log qφ(z|w, x) + logqφ(w | x)
− log pθ(z | w)− log pθ(w)− log pθ(x | z, w)]

=Eqφ(w|x)qφ(z|w,x)[log qφ(z | w, x)− logpθ(z | w)]
+ Eqφ(z,w|x)[log qφ(w | x)− log pθ(w)]

− Eqφ(z,w|x)[log pθ(x | z, w)]
=Eqφ(w|x)[DKL(log qφ(z | w, x) ‖ logpθ(z|w))]

+ Eqφ(z,w|x)[log qφ(w | x)− log pθ(w)]

− Eqφ(z,w|x)[log pθ(x | z, w)].

The derived evidence lower bound objective (ELBO) now has three
terms: the first term is the Kullback-Leibler (KL) divergence be-
tween the latents and their prior, the second term is the divergence
between the weights and their priors, and the last term can be viewed
as the reconstruction likelihood. The whole objective embodies the
capability of modeling data distribution (the last term) and soft con-
straints regularizing both latent representation and model parameters
to approximate specified priors.

2.2. Dynamic Bayesian Recognition Network

After deriving the objective, we endow every tractable term a physi-
cal meaning. Among them, the second term of the derived objective
is the KL divergence between the approximate distribution from the
true posterior of weights in the BNN-based encoder DKL(logqφ(w |
x) ‖ logpθ(w)). However, the approximate distribution term is
log qφ(w | x), indicating the distribution over weights w given
the input x. In other words, it is not a conventional formulation
of Bayesian neural networks where the distribution over weights is
independent of the input logqφ(w).

Therefore we propose a new variant of Bayesian neural net-
works, called dynamic Bayesian neural network (DBNN) to model
weight distribution based on the input (log qφ(w | x)); specifically,
we apply linear projection on the input x, for each DBNN module:

µw =Ww,µ · x ρw =Ww,ρ · x,
µb =Wb,µ · x ρb =Wb,ρ · x,

then obtain the weights w and the bias b via reparameterization, and
further compute the hidden vector h:

sample ε ∼ N (0, I),

w = µw + log(1 + exp(ρw))� ε,
b = µb + log(1 + exp(ρb))� ε,
h = w · x+ b.

By this design, the proposed model is capable of generating dif-
ferent weight distributions based different input signals, where the
extension allows the model to have more capacity and flexibility of
learning the distribution over the variational parameters. Further-
more, the proposed concept about DBNN is general and can be uti-
lized by various deep learning architectures.



2.2.1. Scaled Mixture Gaussian Prior

In this paper, we conduct a scaled mixture of two Gaussians as the
prior distribution on weights; both Gaussians come with zero mean,
but with different variances.

P (w) =
∏
j

πN(wj |0, σ2
1) + (1− π)N(wj |0, σ2

2)

where wj is the jth weight of the network and π is the ratio of the
composition of two Gaussian density function. By setting σ1 > σ2

and 1� σ2, we obtain a prior composed of a heavy tail (σ1) with a
concentration around the 0 mean (σ2), which is similar to the spike-
and-slab prior [16, 17, 18], as illustrated in the right part of Figure 2.
The spike-and-slab prior has various advantages over other common
prior distribution in Bayesian approaches. In this work, π is set to
0.5, σ1 is 1, and σ2 is exp(−6), all the weights have the same prior
parameters, which makes it amenable and feasible to optimize.

2.2.2. Complexity Loss Reweighting

When training VAE, there are several ways to improve training effi-
ciency and stability, one of the notable method is KL annealing [19]:
the idea is to anneal the KL divergence term in the traditional ELBO
objective; the approach gives the reconstruction loss and the KL di-
vergence regularization term different weight coefficients and makes
the weight of KL term gradually increase, from 0 to 1.

When training BNN, we formulate a similar learning objective
by variational inference; therefore we rewrite the loss term:

LB,i = πiDKL(qφ(w) ‖ (w))− Eqφ(w)[logP (Di | w)], (5)

where πi ∈ [0, 1] and
∑n
i πi = 1. Then En[

∑n
i LB,i] = LB ,

where En denotes an expectation over the random partitioning of
mini-batches. We apply the scheme πi = 2n−1

2n−1
, where the first few

mini-batches are heavily influenced by the complexity cost, and the
later mini-batches are largely influenced by the data. At the begin-
ning of learning, the scheme is particularly useful, because for the
first few mini-batches, changes of weights due to the data are subtle,
and data become more influential and the prior less influential when
seeing more data.

2.2.3. Batch Normalization

When training neural networks, the change in the distributions of
layers inputs is a notable problem in training efficiency, because the
layers need to continuously adapt to the new distribution. Prior work
[20] defined internal covariate shift as the change in the distribution
of network activations due to the change in network parameters dur-
ing training, and further proposed the batch normalization technique
to address the issue.

Due to mini-batch training by gradient descent methods ex-
ploited here, we estimate the mean and variance of each mini-batch
and normalize the hidden vector by each dimension, making the nor-
malized representations to have zero mean and the variance equal to
one:

ĥ =
h− E[h]√
Var[h] + δ

, (6)

where δ is a small scalar constant added for numerical stability.
Simply normalizing the distribution sometimes severely restricts the
expressiveness of the neural networks due to the nature of some

commonly-used activation functions, such as the sigmoid function.
Therefore we instead shift and scale the features as below:

ĥ = γ � ĥ+ β. (7)

Even conventional deep neural networks would have the issue
about covariate shift, we argue that Bayesian neural networks would
suffer from internal covariate shift much more due to the sampling
characteristics. Therefore we propose several mechanisms to en-
able model training on the parameters of distribution over variational
parameters (µw, µb, ρw, ρb) and the hidden vector used to predict
the parameters of distribution over the latent representation (µ, σ).
The model framework with the proposed mechanisms is illustrated
in Figure 2.

3. EXPERIMENT

3.1. Experiment Settings

The experiments are conducted on MNIST[21] and EMNIST [22]
datasets, both of which consist of a training and test set with 60000
and 10000 datapoints respectively. Each example is a 28x28 grey-
scale image and pixel values are scaled to be within the range [0, 1].

The size of all the hidden layer is 100, Rectified Linear Unit
(RELU) is chosen to be the activation function between hidden lay-
ers, and the dimension of the latent representation is set to 5. All
models are optimized via Adam [23] with initial learning rate 0.001
for 50 epochs of batch size 32 without early-stop methods.

The performed models in the experiments include:

• Vanilla VAE composes of symmetric encoder and decoder
module as a baseline for comparison [1].

• Simplified Compound VAE is the simplified version of the
proposed model that incorporates BNN for modeling the
weight distribution. This model replaces feed-forward neural
networks in the encoder with typical BNNs to approximate
the distribution of the variational parameters over the training
set, but the distribution is fixed after training process.

• Compound VAE is the complete version of the proposed
model that incorporates DBNN for modeling the distribution
over the weight distribution.

For both versions of compound VAE, different Gaussian weight pri-
ors are adopted and the results are reported.

Table 1 reports the performance (Lrec, DKL, Lrec + LKL) of
the baseline models and the proposed compound VAE models with
different settings.

3.2. Results

Table 1 shows that the simplified version of the proposed compound
VAE slightly outperform the vanilla VAE. Intuitively, extending the
original static feed-forward neural networks to dynamic ones could
improve the model capacity, and the experimental results show that
it also indirectly reduces the amortization gap. In other words, in-
stead of approximating a set of static variational parameters, sam-
pling parameters from a learned posterior during inference is empiri-
cally demonstrated to be a better mechanism in amortized variational
inference.

Because the KL divergence (DKL) is the regularization term and
highly depends on the size of latent representation, the reconstruc-
tion loss becomes an important performance indicator. Note that all
models in Table 1 have the same size of latent representations, in-
dicating that the reconstruction loss reflects the richness of relevant



Model MNIST EMNIST
Lrec DKL Lrec + DKL Lrec DKL Lrec + DKL

Vanilla VAE 114.02 11.39 125.41 177.71 11.99 189.70
112.33 11.09 123.42 176.07 11.84 187.91

Simplified Compound VAE single Gaussian 113.24 11.52 124.76† 177.67 12.16 189.84
111.02 11.45 122.47† 175.94 12.10 188.05

Gaussian mixture 113.21 11.49 124.70† 176.23 12.25 188.48†

110.90 11.37 122.28† 174.60 12.24 186.84†

Compound VAE single Gaussian 109.53 11.95 121.48† 168.22 12.85 181.08†

160.37 7.19 167.56 244.32 3.54 247.87
Gaussian mixture 110.96 11.81 122.77† 172.18 12.46 184.65†

107.77 11.80 119.56† 168.13 12.45 180.57†

Compound VAE (Gaussian mixture) 118.01 11.06 129.07 179.19 11.92 191.11
without DBNN modules for µ and σ 110.52 11.20 121.72 171.70 11.74 183.43

Compound VAE (Gaussian mixture) 154.39 7.87 162.26 228.31 7.50 235.80
without KL reweighting 141.22 7.40 148.62 216.12 7.34 223.46

Compound VAE (Gaussian mixture) 124.08 12.59 136.67 189.92 13.78 203.71
without batch normalization 119.87 12.29 132.16 185.00 13.64 198.64

Table 1. The performance of the baselines and the proposed compound VAE on training/testing set (upper row: training, lower row: testing).

information in the latent representation. Experimental results show
that almost all models have nearly the same performance in KL di-
vergence, and the proposed compound VAEs significantly outper-
form the baseline vanilla VAE in reconstruction loss and the learn-
ing target ELBO (LELBO). The exception is the proposed model with
the standard Gaussian weight prior (N (0, I)), which achieves the
best performance in training set; however, the model performs worst
among all results (shown as the underlined numbers). Its reconstruc-
tion loss is much higher and the KL divergence is much lower than
others, meaning that the model suffers from the well known issue in
VAE called posterior collapse. The issue refers to the phenomenon
that VAEs tend to fit the latent distribution to the standard Gaussian
prior and fail to extract relevant information into latents.

However, the simplified compound VAE does not suffer from
the posterior collapse issue, and the reason may be that the complete
version has remarkable flexibility to model the distribution over the
distribution of variational parameters by predicting the distribution
parameters for the distribution of variational parameters based on
the input signal. On the other hand, the simplified version only re-
places feed-forward networks with BNNs, where all parameters are
randomly initialized and adjusted by gradient-based method. Hence,
because the complete version has more capability to fit the speci-
fied prior, the output of the DBNN probably contains more char-
acteristics of the prior, which is the standard Gaussian distribution.
However, the prior of the latent representation is also the standard
Gaussian distribution, so we argue that the model is easier to fit the
prior of latents and then results in the posterior collapse issue.

3.3. Analysis

In order to validate each component in the proposed compound VAE,
a set of ablation tests is conducted based on the complete version of
the proposed model shown in the lower part of Table 1.

3.3.1. Expressiveness of DBNN

To validate the expressiveness of the design in the proposed dynamic
Bayesian neural network, we replace the DBNN modules for pre-
dicting parameters of latent distribution (µ and σ) with typical feed-
forward neural networks and keep other setting unchanged. Exper-

imental results demonstrate the better model capacity for the pro-
posed DBNN with exact the same amount of weights used to trans-
form the input signal.

3.3.2. Effectiveness of KL Reweighting

We further examine the effectiveness of the KL reweighting mecha-
nism in the framework; Table 1 shows that, without KL reweighting,
the models would have lower KL divergence but higher reconstruc-
tion loss, which is also a sign of tendency toward posterior collapse.
Hence, KL reweighting is shown to be a critical mechanism in the
training procedure.

3.3.3. Effectiveness of Batch Normalization

The proposed compound VAE approximates the distribution over the
distribution of variational parameters, while the vanilla VAE only
models a set of variational parameters. To validate if the flexibility
and sampling property would result in a severer internal covariate
shift issue, we test the models trained without batch normalization.
Experimental results show that both KL divergence and reconstruc-
tion loss would raise without batch normalization, showing the im-
portance of the technique.

In sum, three mechanisms are critical to enable better and effi-
cient training procedure, and our proposed compound VAE is empir-
ically demonstrated effectiveness in two benchmark experiments.

4. CONCLUSION

This paper proposes a new variant of Bayesian neural networks,
named dynamic Bayesian neural networks (DBNN), which models
the distribution over the distribution of variational parameters based
on input signals; such model design is able to generalize to other
deep learning architectures. Also, a brand new variant of VAE that
incorporates DBNN, batch normalization, and various techniques,
called compound variational auto-encoders is further proposed. The
proposed framework is empirically proven to have a narrower amor-
tization gap than the vanilla VAE, and experimental results on two
datasets also derive the conclusions.
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