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ABSTRACT

Spoken language understanding (SLU) is an essential component
in conversational systems. Considering that contexts provide infor-
mative cues for better understanding, history can be leveraged for
contextual SLU. However, most prior work only paid attention to
the related content in history utterances and ignored the temporal
information. In dialogues, it is intuitive that the most recent ut-
terances are more important than the least recent ones, and time-
aware attention should be in a decaying manner. Therefore, this
paper allows the model to automatically learn a time-decay atten-
tion function where the attentional weights can be dynamically de-
cided based on the content of each role’s contexts, which effec-
tively integrates both content-aware and time-aware perspectives and
demonstrates remarkable flexibility to complex dialogue contexts.
The experiments on the benchmark Dialogue State Tracking Chal-
lenge (DSTC4) dataset show that the proposed dynamically context-
sensitive time-decay attention mechanisms significantly improve the
state-of-the-art model for contextual understanding performance.

Index Terms— Spoken language understanding, spoken dia-
logue systems, dialogue modeling, contextual information, time-
decay attention

1. INTRODUCTION

Spoken dialogue systems that can help users solve complex tasks
such as booking a movie ticket have become an emerging research
topic in artificial intelligence and natural language processing areas.
With a well-designed dialogue system as an intelligent personal as-
sistant, people can accomplish certain tasks more easily via natural
language interactions. The recent advance of deep learning has in-
spired many applications of neural dialogue systems [1, 2, 3, 4].

A key component of a dialogue system is a spoken language un-
derstanding (SLU) module—parsing user utterances into semantic
frames that capture the core meaning [5]. A typical pipeline of SLU
is to first determine the domain given input utterances, and based on
the domain to predict the intent and to fill the associated slots corre-
sponding to a domain-specific semantic template [6, 7, 8, 9]. How-
ever, the above work focused on single-turn interactions, where each
utterance is treated independently. To overcome the error propaga-
tion and further improve understanding performance, the contextual
information has been leveraged and shown useful [10, 11, 12, 13].
Prior work incorporating dialogue contexts into the recurrent neural
networks (RNN) for improving domain classification, intent predic-
tion, and slot filling [11, 14, 15, 16]. Recently, modeling speaker role
information [17, 18, 19] has been demonstrated to learn the notable
variance in speaking habits during conversations for better under-
standing performance.

Neural models incorporating attention mechanisms have ad-
vanced various tasks such as machine translation [20], image cap-
tioning [21], etc. Attentional models have been successful because
they separate two different concerns: 1) deciding which input con-
texts are most relevant to the output and 2) predicting an output
given the most relevant inputs. In dialogues, although content-aware
contexts may help understanding [15, 16], the most recent contexts
may be more important than others, so the temporal information
can provide additional cues for the attention design. Prior work
proposed an end-to-end time-aware attention network to leverage
both contextual and temporal information for spoken language un-
derstanding and achieved the significant improvement, showing that
the temporal attention can guide the attention effectively [18, 22].
However, the time-aware attention function is an inflexible, which is
a fixed function of time for assessing the attention weights.

This paper focuses on learning a flexible time-aware attention
mechanism in neural models, where the attention can be dynami-
cally decided based on the contexts for better language understand-
ing. This work is built on top of the role-based contextual model by
modeling role-specific contexts differently to design the associated
time-aware attention functions for improving system performance.
The contributions are three-fold:
• The proposed end-to-end learnable attention has great flexi-

bility of modeling temporal information for diverse dialogue
contexts.

• This work investigates speaker role modeling in attention
mechanisms and provides guidance for the future research
about designing attention functions in dialogue modeling.

• The proposed model achieves the state-of-the-art understand-
ing performance in the dialogue benchmark dataset.

2. END-TO-END SLU FRAMEWORK

The model architecture is illustrated in Figure 1. First, the previ-
ous utterances are fed into the contextual model to encode into the
history summary, and then the summary vector and the current utter-
ance are integrated for helping understanding. The contextual model
leverages the attention mechanisms highlighted in red, which imple-
ments different attention functions for sentence and speaker levels.
The whole model is trained in an end-to-end fashion, where the his-
tory summary vector and the attention functions are automatically
learned based on the downstream SLU task. The objective of the
proposed model is to optimize the conditional probability of the in-
tents given the current utterance, p(y | x), by minimizing the cross-
entropy loss between prediction and target q(y | x):

L = −
∑
k

∑
z

q(yk = z | x) log p(yk = z | x), (1)

where the labels y are the labeled intent tags for understanding.
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Fig. 1. Illustration of the proposed role-based context-sensitive time-decay attention contextual model.

2.1. Attentional Speaker-Aware Contextual SLU

Given the current utterance x = {wt}T1 , the goal is to predict the user
intents of x, including speech acts and associated attributes. We ap-
ply the bidirectional long short-term memory (BLSTM) model [23]
to context encoding to learn the probability distribution of user in-
tents.

vo = BLSTM(x,Whis · vhis), (2)
o = sigmoid(WSLU · vo), (3)

where Whis and WSLU are weight matrices and vhis is the history
summary vector. vo is the context-aware vector of the current ut-
terance encoded by the BLSTM, and o is the intent distribution.
Note that this is a multi-label and multi-class classification, so the
sigmoid function is employed for modeling the distribution after a
linear layer. The user intent labels are decided based on whether the
value is higher than a threshold tuned by the development set.

Considering that speaker role information is shown to be useful
for better understanding in complex dialogues [17, 19], we utilize the
contexts from two roles to learn role-specific history summary repre-
sentations, vhis in (2). Each role-dependent recurrent unit BLSTMrole

receives corresponding inputs, xt,role, which includes multiple utter-
ances ui (i = [1, ..., t− 1]) preceding the current utterance ut from
the specific role, and have been processed by an encoder model.

There are various tasks showing the effectiveness of attention
mechanisms [24, 16]. Recent work showed that two attention types
(content-aware and time-aware) and two attention levels (sentence-
level and role-level) significantly improve the understanding perfor-
mance for complex dialogues. This paper focuses on expanding the
time-aware attention by learning dynamically context-sensitive time-
decay functions in an end-to-end fashion. For time-aware attention
mechanisms, we apply it using two levels, sentence-level and role-
level structures.

For the sentence-level attention, before feeding into the contex-
tual module, each history vector is weighted by its time-aware atten-
tion αrolei :

vU
his =

∑
role

BLSTMrole(xt,role, {αuj | uj ∈ role}), (4)

where xt,role are vectors after one-hot encoding that represent the
annotated intent and the attribute features. Note that this model re-
quires the ground truth annotations for history utterances for training
and testing. Therefore, each role-based contextual module focuses
on modeling role-dependent goals and speaking style, and vo from
(2) would contain role-based contextual information.

2.2. Universal Time-Decay Attention

Because we assume that the most recent contexts are more impor-
tant in dialogues, a time-aware attention should be a decaying func-
tion. Considering that the contextual patterns may be diverse, a flex-
ible and universal time-decay attention function that composes three
types of attentional curves is formulated [22]:

αuniv
ui

= w1 · αconv
ui

+ w2 · αlin
ui

+ w3 · αconc
ui

(5)

=
w1

a · d(ui)b
+ w2(e · d(ui) + f) +

w3

1 + ( d(ui)
D0

)n
,

where wi are the weights of time-decay attention functions, includ-
ing three types [22]: convex, linear, and concave, illustrated in the
top-right part of Figure 1. Note that all attention weights will be
normalized such that their summation is equal to 1.
• Convex αconv

u : Intuitively, recent utterances contain more
salient information, and the salience decreases very quickly
when the distance increases.

• Linear αlin
u : The importance of preceding utterances linearly

declines as the distance between the previous utterance and
the target utterance becomes larger.

• Concave αconc
u : Intuitively, the attention weight decreases rel-

atively slow when the distance increases.
Each of three types of decaying curves represents a different per-
spective on dialogue contexts and models different contextual pat-
terns following the design in the prior work [22].

Because the framework can be trained in an end-to-end manner,
all parameters (wi, a, b, e, f , D0, n) can be automatically learned
to construct a flexible time-decay function. With the combination of
different curves and the adjustable weights, the model can automati-
cally learn a properly oscillating curve in order to model the diverse
and complex contextual patterns using the attention mechanism.



2.3. Dynamically Context-Sensitive Attention

As described in the previous sections, the proposed time-decay at-
tention mechanisms have parameters (a, b, e, f , D0, n) to determine
the shapes of curves. In addition to the time-decaying property, we
further improve our design to dynamically encode context-sensitive
characteristics into the associated attention weights. The feature vec-
tor vcur of the current utterances x can be extracted by BLSTM or use
the mean vector among pre-trained word embeddings of the current
utterance.

Considering that different speakers may have totally different
speaking behaviors [17, 18, 19], a role-based context-sensitive at-
tention is proposed. To better model the attention curve, the contex-
tual information is also encoded by the BLSTM model, where the
preceding utterances from different speakers are encoded by differ-
ent modules.

vhis,role = BLSTMrole(xt,role), (6)
prole =Wp,role · (vhis,role, vcur) + bias, (7)

where the speaker-specific contextual encoding vhis,role is fed along
with the feature of the current utterance (vcur) into fully-connected
layers to predict the parameters prole ∈ {a, b, e, f,D0, n | role} to
determine the tendency of the attention curve. Because the param-
eters prole are determined by the output of neural attention models
without any clipping or projection and some of these uncontrolled
real number are exponents, therefore the following two regulariza-
tion terms are introduced as soft constraints,

−α ·min(prole, 0) + β ·
∑

p2
role. (8)

The first loss term is to encourage the model to output a positive
number, and the second term is to facilitate the model to predict
numbers with small absolute values, where α and β are the weights
to adjust the intensity of regularization. Note that not all attention
models use both regularization terms, while we endow the models
with maximum flexibility and add constraints only if necessary. For
example, if the cut-off distance D0 of the concave time-decay at-
tention is negative, the denominator 1 + (d(ui)/D0)

n would easily
become complex number, which is not applicable. To makeD0 ≥ 0,
we use the model output as the exponent of the exponential function
with e as the base. In order to further facilitate the concave decay-
ing manner, the first term is applied; on the other hand, to prevent
explosion, the second regularization term is utilized.

3. EXPERIMENTS

To evaluate the proposed model, we conduct the language under-
standing experiments on human-human conversational data.

3.1. Setup

The experiments are conducted using the DSTC4 dataset, which con-
sist of 35 dialogue sessions on touristic information for Singapore
collected from Skype calls between 3 tour guides and 35 tourists,
including 31,034 utterances and 273,580 words [25]. All recorded
dialogues with the total length of 21 hours have been manually tran-
scribed and annotated with speech acts and semantic labels at each
turn level. The speaker information (guide and tourist) is also pro-
vided. The human-human dialogues contain rich and complex hu-
man behaviors and bring much difficulty to all tasks. We randomly
selected 28 dialogues as the training set, 5 dialogues as the testing
set, and 2 dialogues as the validation set.

We focus on predicting multiple labels including intents and at-
tributes, so the evaluation metric is an average F1 score for balancing
recall and precision in each utterance. The experiments are shown
in Table 1, where we report the average results over more than three
runs for both tourists and guides. In all experiments, we use mini-
batch Adam as the optimizer with the batch size of 32 examples. The
size of each hidden recurrent layer is 128 or 64; since the proposed
approach uses additional attention models to predict parameters of
decaying curves, to fairly verify the effectiveness of the proposed
method, smaller hidden recurrent layers (size = 64) are utilized in
the proposed model (row (h)) and bigger ones are conducted in oth-
ers (rows (b)-(g)). We use pre-trained 200-dimensional word em-
beddings GloV e [26]. We only apply 40 training epochs without
any early stop approach.

In the training process, we can assign the attention models ran-
dom targets to incorporate the supervised loss during the first few
epochs to accelerate training. This paper simply sets a integer target
for the attention model at the very beginning. Note that experiments
show that our attention model can be train from scratch in an end-
to-end manner without any supervised signal and achieve the same
performance.

3.2. Effectiveness of Time-Decay Attention

To evaluate the proposed time-decay attention, we compare the per-
formance with the naı̈ve SLU model without any contextual infor-
mation (row (a)), the contextual model without any attention mecha-
nism (row (b)), and the one using the content-aware attention mech-
anism (row (c)), where the attention can be learned at sentence and
role levels. It is intuitive that the model without considering con-
texts (row (a)) performs much worse than the contextual ones for di-
alogue modeling. The rows (d)-(h) utilized the time-decay attention;
rows (d)-(e) use only the time-decay attention; rows (f)-(g) model
both content-aware and time-decay attention mechanisms together,
where content-aware attention is directly estimated by concatenation
of each context and the current utterance by a NN module. There
are two settings for time-decay attention learning: 1) Hand: hand-
crafted hyper-parameters (rows (d) and (f)) and 2) E2E: end-to-end
training for parameters (rows (e) and (g)). In the hand-crafted set-
ting, the hyper-parameters a = 1, b = 1, e = −0.125, f = 1, D0 =
5, n = 3 are adopted, the parameters are chosen to examine the
effectiveness of each type of decaying curve, where we choose the
parameters such that the effectiveness of each type of decaying man-
ner could be properly investigated (the linear one will be located
between the two curves). In the end-to-end setting, all parameters
are learnable parameter initialized as the hyper-parameters described
above and fine-tuned by end-to-end learning. The row (e) previ-
ously achieves the state-of-the-art performance [22]. Our proposed
context-sensitive time-decay attention model is shown in the row (h).

Table 1 shows that all models with the time-decay attention (row
(d)-(g)) outperform the model without temporal modeling. However,
row (c) performs worse than the one without any attention mecha-
nism (row (b)), and rows (f)-(g) are slightly worse than the ones
with only time-decay attention (rows (d)-(e)), revealing that with-
out a delicately-designed attention mechanism, it is not guaranteed
that incorporating an additional content-aware attention would bring
improvement.

3.3. Analysis of Context-Sensitive Attention

Prior work (rows (f) and (g)) integrated both content-aware and time-
decay attention to demonstrate the capability of mitigating the neg-



SLU Model Sentence-Level Role-Level Context Length
3 5 7

(a) Naı̈ve SLU 70.18 –
(b) No Attention Contextual Model 74.52 74.75 74.69 (-) 74.52 (-)
(c) Content-Aware Contextual Model [17] 73.69 74.28 74.04 73.90 (-) 73.69 (-)
(d) Time-Decay Attentional Model [22] Hand 76.41† 76.68† 76.05 76.34 (+) 76.41 (+)
(e) E2E 76.67† 76.75† 76.26 76.43 (+) 76.67 (+)
(f) Content-Aware + Time-Decay Attention [22] Hand 75.48† 76.61† 75.16 75.27 (+) 75.48 (+)
(g) E2E 75.83† 76.74† 75.82 75.92 (+) 75.83 (-)
(h) Context-Sensitive Time-Decay Attention 77.05† 76.87† 76.62 76.96 (+) 77.05 (+)

Table 1. The understanding performance reported on F-measure in DSTC4, where the context length is 7 for each speaker (%). † indicates the
significant improvement compared to all baseline methods (p < 0.05 on the one-tailed t-test). Hand: hand-crafted; E2E: end-to-end trainable.

ative effect by the coarse design of content-aware attention model,
but leveraging both attention types ironically results in worse perfor-
mance than using single time-decay attention (row (d)-(e)) [22]. The
reasons may be that: 1) the harmful impact of low-quality content-
aware attention is overwhelming, 2) the interaction between two
types of attention during learning is not cooperative enough. Even
though the row (g) in Table 1 learns both content- and time-aware at-
tention functions, the time-decay attention curve is fixed after train-
ing; in other words, it is not content-responsive. If a history sentence
contains salient information, it would be weighted by a small atten-
tion value from the time-decay attention curve regarding the large
time difference.

Our proposed context-sensitive attention model effectively in-
tegrates time-aware and content-aware perspectives, where instead
of training the content-aware and time-aware attention separately,
we utilize contextual information to dynamically construct the time-
decay attention curves. The results show that proposed role-based
context-sensitive attention model (row (h)) outperform all compared
baselines, yielding 9.7% improvement over the Naı̈ve baseline (row
(a)). As mentioned above, one can control the level of flexibility in
the time-decay attention at will, it is possible that the combination
may interfere attention model learning. Surprisingly, experiments
show that the universal models outperform the models with a sin-
gle time-decay attention type, demonstrating the positive interaction
between attention functions and efficacy of our design.

3.4. Speaker Role in Attention Modeling

For role-level attention, Table 1 shows that all results with vari-
ous time-decay attention mechanisms are better than the one with
only content-aware attention (row (c)). Considering the benefit
of considering speaker interactions [17, 18], therefore instead of
weighting each utterance by its sentence-level attention, our model
computes a representative attention value for each speaker by us-
ing the most important, representative utterances among what the
speaker said. Namely, for role-level attention, each speaker role is
assigned an attention value to represent the importance from the
conversational interactions. By introducing role-level attention, the
sentence-level attention weights can be smoothed to avoid inappro-
priate values and benefit language understanding. Surprisingly, even
though learning sentence-level temporal attention is difficult, the
proposed context-sensitive time-decay attention (row (h)) is the only
one whose sentence-level results are better, further demonstrating
the strong adaptability of fitting diverse dialogue contexts and the
capability of capturing salient information.

The proposed methods are built on top of the role-base contex-
tual framework, which utilizes separate modules to learn speaker-

specific features to improve understanding. However, the prior
time-decay attention models (rows (d)-(g)) are speaker-independent,
where different speakers share the same decaying attention curve.
To further investigate the effectiveness of the speaker role in atten-
tion modeling, we make the proposed context-sensitive attention
speaker-dependent, so-called “role-based context-sensitive atten-
tion”. The result (row (h)) shows that role-based attention modeling
is promising, of which the universal design performs best. In sum,
our attention model design not only elegantly combines content-
aware and time-aware perspectives but effectively integrates the
concept of speaker role modeling into attention mechanisms.

3.5. Robustness to Context Lengths

It is intuitive that longer context abounds richer information; how-
ever, it may obstruct attention learning and result in poor perfor-
mance due to too much information for digesting and more noises for
inaccurate estimation. Because when modeling dialogues, we have
no idea about how many contexts are enough for better understand-
ing, the robustness to varying context lengths becomes an important
issue for contextual SLU. Here, we compare the results using differ-
ent context lengths (3, 5, 7) for detailed analysis in Table 1, where
the number is for each speaker. The results show that: 1) the models
without attention and content-aware attention become slightly worse
with increasing context lengths; 2) the time-decay attention models
from the rows (d)-(g) in the Table 1 mostly achieve better perfor-
mance when conducting longer contexts, where the model leverag-
ing content-aware and time-aware attention by end-to-end learning
outperforms the one under handcrafted setting whereas it weakens
as context lengths become longer, showing less robustness to con-
text lengths; 3) the proposed context-sensitive method performs the
best for all context length settings, demonstrating not only the flexi-
bility of adapting diverse contextual patterns but also the robustness
to varying context lengths.

4. CONCLUSION

This paper designs a role-based context-sensitive time-decay atten-
tion functions based on an end-to-end contextual language under-
standing model, where different perspectives on dialogue contexts
are analyzed. The experiments on a benchmark human-human di-
alogue dataset show that the understanding performance can be
boosted by introducing the proposed attention mechanisms which
elegantly integrate content-aware, time-ware, speaker-role perspec-
tives. Furthermore, the proposed method is easily extensible to
multi-party conversations and showing the potential of integrating
temporal and contextual information in NLP tasks of dialogues.
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