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Abstract

With the increasing research interest in dialogue response
generation, there is an emerging branch formulating this task
as selecting next sentences, where given the partial dialogue
contexts, the goal is to determine the most probable next sen-
tence. Following the recent success of the Transformer model
(Vaswani et al. 2017), this paper proposes (1) a new variant
of attention mechanism based on multi-head attention, called
highway attention, and (2) a recurrent model based on trans-
former and the proposed highway attention, so-called High-
way Recurrent Transformer. Experiments on the response se-
lection task in the seventh Dialog System Technology Chal-
lenge (DSTC7) show the capability of the proposed model
of modeling both utterance-level and dialogue-level informa-
tion; the effectiveness of each module is further analyzed as
well.

Introduction

With the increasing trend about dialogue modeling, response
selection and generation have been widely studied in the
NLP community. In order to further evaluate the current
capability of the machine learning models, a benchmark
dataset was proposed in the seventh Dialog System Tech-
nology Challenge (DSTC7) (Yoshino et al. 2018), where
the task is to select the most probable response given a
partial conversation. To simulate real world scenarios, sev-
eral variants of selections are investigated in this task: 1)
selecting from 100 candidates, 2) selecting from 120,000
candidates, 3) selecting multiple answers, and 4) there may
be no answer. Some subtasks are much more difficult than
the original setting. In addition, the ability of generaliza-
tion should be examined; hence, two datasets, Ubuntu IRC
dialogs (Kummerfeld et al. 2018) and course advising cor-
pus, are utilized for the experiments. These datasets have
very different properties: (1) the Ubuntu dataset includes di-
alogues from Ubuntu IRC channel that aim to solve tech-
nical problems, and (2) the advising dataset is constituted
with conversations between a student and an advisor, where
the advisor helps the student about course taking. Compared
with the advising dataset, utterances in a dialogue from
Ubuntu data are more coherent, so selecting the next sen-
tence may require understanding of previous dialogue turns.
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On the contrary, the topic in a dialogue from advising data
may change frequently, but the information access behav-
ior is more goal-oriented. How much information in the di-
alogue contexts should be considered for sentence selection
in these two datasets may be different, so how to effectively
utilize the information is challenging and salient. In sum, the
challenge covers a wide range of scenarios in real-world ap-
plications and serves as a set of benchmark experiments for
evaluating dialogue response selection models.

The nature of a conversation is different from general arti-
cles, because opinion, topic and meaning of some terms may
change as the dialogue proceeds. Meanwhile, a conversation
comprises utterances spoken by the participants, where each
utterance is short and having clear boundary. Especially, one
utterance is often a response of its previous utterance; there-
fore we could expect high dependency between every two
consecutive utterances in a conversation.

Modeling dependency over utterances should be help-
ful for understanding conversations; however, the methods
of modeling such dependency have not been widely ex-
plored. In this work, we propose highway recurrent trans-
former to explicitly model not only intra-utterance but also
inter-utterance dependency over the dialogue structure. The
intra-utterance dependency is modeled with Transformer en-
coder block proposed in (Vaswani et al. 2017), while the
inter-utterance dependency is modeled by using the pro-
posed highway attention recurrently. Specifically, the high-
way attention is a modified version of multi-head atten-
tion, designed to have the ability to utilize the information
from contexts while preserving the meaning of the current
utterance. Experiments show that highway recurrent trans-
former model is effective on the response selection task; fur-
thermore, the proposed model can also generalize to other
retrieval-based tasks.

Related Work

Previously, another large-scale dataset, Ubuntu Dialog Cor-
pus (Lowe et al. 2015) was proposed, and a large number of
approaches have been applied to this data. One category of
the approaches encodes the given partial conversation and
candidate sentences into vectors separately, and then selects
the answer by matching the vectors. In this category, LSTM
and CNN were applied to encode the dialogues and response
candidates (Lowe et al. 2015; Kadlec, Schmid, and Klein-
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Figure 1: The illustration of the proposed highway recurrent transformer. In the bottom left part, the blue and green rounded
rectangles represent word vectors in the partial conversation U spoken by two different speakers. The pink rounded rectangles
at the bottom right corner represent word vectors in a candidate z. Both two sequences of vectors are augmented with extra

features (light orange part beneath the vectors).

dienst 2015; Hochreiter and Schmidhuber 1997; LeCun et
al. 1998). Moreover, Zhou et al. used GRU and CNN to
utilize a hierarchical structure for obtaining word-level and
conversation-level representations. Another category of the
approaches focuses on explicitly matching the conversation
and the candidates instead of encoding them into vectors. In
this category, Wu et al. matched the GRU-encoded words
in the utterances and candidates with an attention mecha-
nism (Bahdanau, Cho, and Bengio 2014). Zhang et al. mod-
eled not only the relation between utterances and responses
but also the relation between utterances and the last utter-
ance in the given partial conversation. Zhou et al. formed
a 3D similarity matrix by stacking the matching matrices
between words in the utterances and each candidate, and
then 3D convolution is used to calculate the score for each
candidate. Among the two categories, only few works con-
sidered the relation between utteraces (Zhang et al. 2018;
Zhou et al. 2018), but none applied the attention for this task.
Specifically, Zhang et al. only modeled the utterance rela-
tion to the last one, while Zhou et al. modeled the relation
between utterances implicitly with a convolution operation.

Task Description

In the response selection challenge, a partial conversation
and a set of response candidates are provided, and the
model needs to select one response from the candidates
set. The partial conversation consists of [ utterances: U :
{u1,us, -+ ,u;}, an utterance is a sequence of words, i-th
utterance is denoted as u; : {wly, wl, wly, -, wf, }.
Each speaker participating in the conversation is given a spe-
cial token, say <speakerl>, <speaker2>, and the spe-

cial token is prepended to the utterances from that speaker.
A candidate set consisting of k£ candidates is denoted as
X : {x1,22, - ,x1}, each candidate is a sequence of
words z; : {w,wy, ,wfmj}. For some datasets,
some knowledge-grounded features of a word w are also
available, denoted as F'(w). Among the candidates, none
or some would be the correct responses, the labels indi-
cating if the candidates are correct answers are denoted as

Y: {y17y27"' ayk}'

Highway Recurrent Transformer

We propose Highway Recurrent Transformer to model both
the intra-utterance and inter-utterance dependency, which is
composed of two main component: Transformer (Vaswani et
al. 2017) and highway attention. The whole model architec-
ture is illustrated in Figure 1.

Word Feature Augmentation

Words in the utterances of a conversation and candidates are
first converted into their word embeddings, and the embed-
dings are augmented with some extra knowledge-grounded
features if such features are available. We denote the se-
quences of words with extra features in the context, candi-
dates as

U : {ﬂlaﬂQa e 7al}7

X {‘%17*%27 e v%k}v
each word embeddings in the sequences is concatenated
with features

W = [w; F(w)],
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Figure 2: The illustration of the encoding part in the high-
way recurrent transformer. The input of multi-head attention
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Figure 3: The illustration of the multi-head attention layer.
Note that the input Query, Key, Value and the output are se-
quences of vectors.

where F'(w) is a vector of knowledge grounded features de-
pending on the dataset.

Transformer Encoder Block

A transformer encoder block (Figure 2) proposed in
(Vaswani et al. 2017) consists of a multi-head attention layer
and a position-wise feed-forward network, residual connec-
tion and layer normalization are used to connect the two
components, details are specified as follows.

Multi-Head Attention Layer A multi-head attention
(Vaswani et al. 2017) (Figure 3) consists of the heads of
attention, each head performs linear transformation before
performing attention operation; with different sets of train-
able parameters, each attention head potentially models dif-

ferent relationship between two sequences. Specifically, the
inputs of the multi-head attention layer are three sequences
of vectors: query Q@ € RU X4 key K € R2X% value
V € REX4s where [,l, are the length of the first and
second sequence respectively. Then for the h-th head, three
weight matrices W& WEhR WVh ¢ R *dr are used to
project the three inputs to a lower dimension d,,, and then an
attention function is performed

A" = Attention(Q", K, Vh),

where Q" = QW KM = KWKhr Vi = VWV", The
attention function generates a vector for each vector in the
query sequence (. Let the outputs of the attention function
be A" € Ri**dp_which is weighted sum of value V' based

on similarity matrices S*. For a = 1,2,--- 1, the a-th
output is calculated as below:
h — Qh (Kh)T,
l2 h
exp s
A=Y P na (1)
S e,

where s are the similarity scores in the similarity matrix
S". Then the output of the multi-head attention is the lin-
ear transformed concatenation of the outputs from attention
heads:

MultiHead(Q, K, V) = Concat(A', A%, ..., ATYW©

where H is the number of heads, and W© € W dpxds jgq
trained weight matrix.

Position-Wise Feed-Forward Network The position-
wise feed-forward network (FFN) transforms each vector in
a sequence identically as follows:

FFN(X) = max(07 XWy + b])W2 + by

Residual Connection and Layer Normalization Then
the above two components are connected with residual con-
nection and layer normalization (Ba, Kiros, and Hinton
2016):

ResiNorm(f, X) = LayerNorm(X + f(X)),
TransformerBlock(X) =
ResiNorm(FFN, ResiNorm(MultiHead, (X, X, X))).

Note that here we use the same sequence for the query, key,
value arguments of the mult-head attention for self-attention.

Highway Attention

Motivated by Highway Networks (Srivastava, Greff, and
Schmidhuber 2015), we propose a modified version of
multi-head attention, the highway attention (Figure 4), in
which attention also acts as a highway preserving informa-
tion from the lower layer. The highway is achieved by per-
forming attention on the query vector itself in addition to the
key/value sequence. Specifically, given query Q € R\ *4s,
key K € R2%4s value V € R2*%sin addition to linear
transformation defined in equation (1), we also transform the



Figure 4: Highway Attention. The attention values S (blue
blocks) are the inner product of Q" and K" (rounded rect-
angles with red border and blue border respectively). The
dotted curve from one vector (rounded rectangle) to the at-
tention value (blue block) denotes that the vector is weighted
by the value. So the output vectors (top round rectangles
with red borders) are the summation of the vectors V, QV"
(rounded rectangles with green border) weighted by the at-
tention values.

query sequence () with W " and WV into additional fea-
tures:

Q" = Qwe,

Kh — (K + bCO)WKh,

Vh = vwVvh, (2
QKh = (Q + bself)WKha

QVh — Qwvh.

The bias vectors b, and bse;y are added to each vector in
sequence K and () respectively. They are added for two rea-
sons: First, they encode the information of the key’s source,
whether the key is from the key sequence K or from the
query sequence (), it may be crucial since the calculation of
the similarity matrix S is position-independent. Secondly,
the tendency of co-attention or self-attention could be mod-
eled; in other words, it may learn some prior knowledge
which is independent of current data samples. Then the sim-
ilarity matrices S € R!**!2 and S, f € R% are calculated:

Sh — Qh(Kh)T,
S?elf = diag(Qh(QKh)T)-

Note that here we only take the diagonal of the self-attention
similarity matrix S", s to measure the tendency toward fo-
cus on itself for each vector. Hence (1) could be expanded

l2

Al =3"

Iy h h
p=1 Zt:l exp Sa,t + exp Sself,a

exp sh »

vy 0

h
Sself,a Vh
Vi,

1
121 €Xp sy, + exp Sgelf,a
Namely, A” is the weighted sum of Q¥" and vectors in se-
quence V". When S . is larger, A" will retain more in-

formation of Q". If we treat the attention mechanism as a
transformation that transforms vector sequence () into vec-
tor sequence A, then the design here provides a highway to
preserve lower layer information. Finally, as in equation (2),
we define the Highway Attention as linear transformation of
the concatenation of the heads:

HighwayAttn(Q, K, V) = Concat(A*, .-, AT YWO,

Recurrence Each utterance u; is encoded with a trans-
former block that shares the parameter of the ones in (2)
with the positional encoding:

vY = TransformerBlock(ii; + PE),

where PE represents positional encoding.

Because the current utterances may refer to the instances
mentioned in the previous utterance, the highway attention
is applied recurrently to route the information from the pre-
vious utterances a_; to the current one v and further infer

the attended output a¥':
aU o 'U{J ifi = ].7
* | HighwayAttn(v¥,a¥ ;) ifi > 1.

i Qi1

From another perspective, if we view the outputs of the
highway attention for a utterance as the “memory” that rep-
resents the dialogue state till now, the Highway Attention is
hence very similar to the update gate of GRU (Cho et al.
2014). Equation (3) decides how much information is read
into the memory, similar to the update gate of GRU.

Candidate Selection

Similarly, each candidate Z; is encoded with a transformer
block with the positional encoding:

’UJX = TransformerBlock(Z; + PE).

The bi-directional highway attention is applied to model the
relation between conversations and candidates in two direc-
tions.

ﬁJX = HighwayAttn(U]X cag’) )

aV = HighwayAttn(al, UJX) 3)
where alU represents the most recent output of highway at-
tention from utterances U. Note that the parameters of the
two highway attention blocks are shared.

In another similar model, highway recurrent transformer-
all,all utterances are considered when applying bidirectional
highway attention, so (4) and (5) are replaced with

o} = HighwayAttn(v), [ s a5’; - 5a7']),

aV = HighwayAttn([a¥;aY;- - ;al], UJX)



For the submitted system, the attention mechanism is used
to condense two sequences into two vectors by weighted
sum over feature sequences:

Z akvj k>

E akak 9

where w is a trainable weight vector. The score of a candi-
date x; is calculated as s; = r* - V. However, we after-

wards find max pooling over dimensions is more effective:

Q= wTv

ak:w

TJX = max(fzjx), ¥ = max(aY),

therefore the max-pooling method is conducted in the sub-
sequent experiments in this paper.

We trained the submitted system with the ranking loss,
which gives the additional penalty if the lowest score among
the positive samples’ scores is not greater than the highest
one among the negative ones’ by a margin:

LSE(S) = logz exp{s},

sesS
=max(0, LSE({s;|y; = 0}
+LSE({—s;ly; = 1}) +7),

where S is the set of scores of candidates and LSE(.) is a
smooth approximation of maximum function. Afterwards,
we find it does not outperform binary cross entropy, so in the
experiments in this paper, we utilize the binary cross entropy
function as the objective:

Lrank (U7 Xa Y)

LU, X,Y)

Zyglogo (sj) + (1 —y;)log(l —o(s;))

Experiments
Dataset

DSTC7-Trackl contains two goal-oriented dialogue datasets

— 1) Ubuntu data and 2) Advising data. There are five sub-

tasks in this challenge, where this paper focuses on the sub-

task 1, 3 and 4, because the same model architecture can be
applied to these subtasks. Here we briefly describe the set-
tings for each subtask:

e Subtask 1: There are 100 response candidates for each di-
alogue, and only one is correct.

o Subtask 3: There are 100 response candidates for each di-
alogue. The number of correct responses is between 1 and
5. Multiple correct responses are generated using para-
phrases.

o Subtask 4: There are 100 response candidates for each di-
alogue, and an additional candidate no answer should also
be considered. The number of correct responses is either
Oorl.

Settings

We train and evaluate our model on the Ubuntu and Advis-
ing datasets provided by DSTC7 (Yoshino et al. 2018) track
1. Both the datasets are tokenized with Spacy (Honnibal and

Montani 2017) and pre-trained word embeddings FastText
(Bojanowski et al. 2017) are used. For the Advising dataset,
in the preprocessing phase, course numbers are normalized
to a uniform format (e.g. CS1234n). And we define the do-
main specific binary features with the provided suggested
courses list and the prior taken courses list:

F(w) _ [Fprior(w)’Fsuggested(w)} (6)

where FP7io7 () and Fsv99¢5ted(q) are 1 if and only if
w is a course number and the course is in the prior taken
courses list or the suggested courses list respectively. For
the position-wise feed forward function in the highway re-
current transformer model, 512 is used as the hidden layer
dimension, and each utterance is encoded by 2 Transformer
encoder blocks. The model is trained by sampling negative
candidates so the total number of candidates is 10 for each
sample. The whole model is optimized with Adam optimizer
(Kingma and Ba 2014) with learning rate 0.0001.

Baseline Models

We compare our model with following baseline models:

e Dual LSTM (Lowe et al. 2015): uses two LSTMs to en-
code the conversation and the candidates into two vectors,
and the inner product is used to select the candidate.

e Hierarchical LSTM: is based on the encoder in HRED
(Serban et al. 2016) for encoding the conversations, where
one LSTM is used to encode an utterance or a candidate
into one vector as its utterance representation, and then
the second LSTM encodes the utterance-level representa-
tions into a conversation-level representation. Finally, the
candidate is selected based on the inner product of its rep-
resentation and the conversation-level representation.

e Transformer: The utterances are concatenated as a single
sequence and then both the sequence and the candidate
encoded by layers of transformer encoder blocks. Then bi-
directional highway attention and max pooling are applied
and two vectors that represent the conversation and the
candidate are obtained. Their inner product is used to for
selection.

e Transformer-Last: Same as the transformer described
above, but only the last utterance is fed into the model.

Ubuntu Results

The performance comparison is shown in Table 1. It is ob-
vious that on the Ubuntu data, the proposed highway re-
current transformer outperforms the transformer baseline,
and the highway recurrent transformer-last also outperforms
the transformer-last. Especially for subtask 1, both highway
recurrent transformer and highway recurrent transformer-
last significantly outperform the transformer without recur-
rent highway attention. For subtask 4, the highway recur-
rent transformer-last also obtains comparable performance
with the transformer, but still worse than the highway recur-
rent transformer-all. Note that the highway recurrent trans-
former models the relation between conversations and the
candidates in the lower layer, and the relation is modeled
by the bi-directional highway attention layer at almost the
last layer. In other words, our model encodes the partial



Ubuntu Advising

Recall@10 MRR Average Recall@10 MRR Average
Dual LSTM 62.6/58.7 36.23/3537 49.39/47.03 | 62.8/39.8 31.36/15.71 47.14/27.76
Hierarchical LSTM 65.3/575 37.83/34.54 51.56/46.02 | 64.4/47.8 32.32/23.84 48.42/35.82
Transformer 64.8/60.6 40.55/36.06 52.68/4833 | 71.6/52.4 40.19/25.30 55.90/38.85
Subtaskl  Transformer-Last 62.8/49.1 35.40/28.08 49.10/38.59 | 70.4/52.6 39.23/25.12 54.81/38.86

Highway Recur. Trans.-A | 74.24/66.2 46.01/40.40 60.12/53.30 | 71.6/48.4 39.30/21.43 55.45/3491
Highway Recur. Trans.-L | 74.06/67.0 45.18/40.19 59.62/53.60 | 69.8/51.6 42.32/2536 56.07/38.48

Ensemble 89.62/67.9 66.37/43.52 77.99/55.71 | 77.0/54.8 39.98/27.89 58.49/41.34
Dual LSTM - - - 65.0/474 43.43/22.41 54.25/3491
Hierarchical LSTM - - - 73.4/522 52.41/2573 62.91/38.96
Transformer - - - 79.2/60.6 55.00/29.89 67.10/45.25
Subtask3  Transformer-Last - - - 81.0/61.2 56.42/31.69 68.71/46.45
Highway Recur. Trans.-A - - - 80.8/57.2 53.54/27.36 67.17/42.28

70.8/54.6 4552/29.08 58.16/41.84
81.0/60.4 57.15/31.71 69.08/46.06

Highway Recur. Trans.-L - - -
Ensemble & Fine Tune - - -

Dual LSTM 61.9/69.1 34.72/3894 48.31/54.02 | 64.0/43.8 28.19/18.20 46.09/31.00
Hierarchical LSTM 5557579 3273/34.44 44.14/46.17 | 57.0/40.6 31.25/17.28 44.08/28.94
Transformer 70.4/753  40.77/46.29 55.60/60.79 | 69.6/52.2 32.62/22.16 51.11/37.18
Subtask4  Transformer-Last 60.6/62.4 3435/36.84 47.47/49.62 | 68.7/56.8 33.92/2442 51.31/40.61
Highway Recur. Trans.-A | 71.1/75.7 41.37/46.51 56.23/61.11 | 60.6/40.4 29.30/16.28 44.95/28.34
Highway Recur. Trans.-L. | 68.8/73.3  38.56/41.72 53.70/57.51 | 57.8/39.2 23.54/25.18 40.67/32.19
Ensemble 71.2/729 40.89/43.37 56.04/58.13 | 64.2/46.4 33.01/27.09 48.61/36.75

Table 1: Performance of the different models on the validation / test sets.

conversation in vectors independent of the candidates, and
the computation cost for scoring one candidate is only the
bi-directional highway attention and the inner product. It
can be a great advantage over other approaches that model
the relation between conversations and candidates in the
lower layer. The highway recurrent transformer-last further
reduces the computation cost required to score candidates
by considering only the output of the last utterance. There-
fore, the performance loss incurred by the highway recurrent
transformer-last can be seen as the trade-off between the ac-
curacy and the efficiency.

Adyvising Results

In the advising data, the advantage of the recurrent struc-
ture is not as significant as in the Ubuntu data. From Table
1, we can also see that for the subtask 1 and 3 on advis-
ing data, transformer-all and transformer-last obtain simi-
lar performance, implying that utterances prior to the last
one have little useful information to predict the next one.
That may indicate why the recurrent highway attention is
not as useful on the advising dataset. Nevertheless, it is sur-
prising that the ensemble of highway recurrent transformer-
last and the hierarchical LSTM leads to significant perfor-
mance boost compared with either one of two single models.
The results demonstrate that the proposed highway recurrent
transformer-last model may have some complementary ad-
vantages the hierarchical LSTM does not have. In sum, the
proposed model achieves the improvement for the subtask 1
and comparable performance for the subtasks 3 and 4 with
the transformer model for advising dialogues.

Official Evaluation

In the official evaluation, the submitted systems are not the

optimal ones. All submitted systems use 1 layer of the trans-

former encoder block to encode the utterances. For subtasks

1 and 4, we ensemble the results of the hierarchical LSTM

and our highway recurrent transformer-last by summing the

scores of all candidates before applying the sigmoid func-

tion. As for subtask 3, in addition to the summation trick

above, we further fine-tune the whole model. To sum up, the

submitted systems include:

e Subtask 1: Ensemble

e Subtask 3: HierRNN, Highway Recurrent Transformer-
Last, Ensemble & Fine-Tuning

e Subtask 4: HierRNN, Ensemble

Our submitted systems achieve either the 2nd place or the

3rd place for the above three subtasks for both Ubuntu and

advising data by combining with another attention-based

model, demonstrating the effectiveness of our model.

Conclusion

This paper proposes a highway recurrent transformer that
effectively models information from multiple levels, includ-
ing utterance-level and conversation-level, via a highway at-
tention mechanism. The experiments of DSTC7 empirically
demonstrate the superior capability of estimating the relation
between the dialogue and the response and further selecting
the proper response given the dialogue contexts. Compared
with the state-of-the-art transformer models, our proposed
model achieves improved performance. The proposed high-
way recurrent transformer can be investigated for other tasks
in the future.
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