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Abstract

The response selection has been an emerging research topic
due to the growing interest in dialogue modeling, where the
goal of the task is to select an appropriate response for con-
tinuing dialogues. To further push the end-to-end dialogue
model toward real-world scenarios, the seventh Dialog Sys-
tem Technology Challenge (DSTC7) proposed a challenge
track based on real chatlog datasets. The competition focuses
on dialogue modeling with several advanced characteristics:
(1) natural language diversity, (2) capability of precisely se-
lecting a proper response from a large set of candidates or
the scenario without any correct answer, and (3) knowledge
grounding. This paper introduces recurrent attention pooling
networks (RAP-Net), a novel framework for response selec-
tion, which can well estimate the relevance between the dia-
logue contexts and the candidates. The proposed RAP-Net is
shown to be effective and can be generalize across different
datasets and settings in the DSTC7 experiments. In the future,
the proposed model can be evaluated on other retrieval-based
tasks to test the model capability of generalization.

Introduction

With the increasing trend about dialogue modeling, response
selection and generation have been widely studied in the
NLP community. In order to further evaluate the current
capability of the machine learning models, a benchmark
dataset was proposed in the seventh Dialog System Tech-
nology Challenge (DSTC7) (Yoshino et al. 2018), where the
task is to select the most probable response given a partial
conversation. To approximate the real world scenarios, sev-
eral variants of selections are investigated in this task: 1)
selecting from 100 candidates, 2) selecting from 120,000
candidates, 3) selecting multiple answers, 4) there may be
no answer, and 5) with external information. Some subtasks
are much more difficult than the original setting. In addition,
the ability of generalization should be examined; hence, two
datasets, Ubuntu IRC dialogs (Kummerfeld et al. 2018) and
course advising corpus, are utilized for the experiments.
These datasets have very different properties, where the di-
alogs in the Ubuntu IRC dialogs dataset are very technical,
and are more problem-solving-oriented, while the dialogs in
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the course advising dataset tend to be more casual, and the
goals are more like inquiring information rather than solv-
ing a specific problem. In sum, the challenge covers a wide
range of scenarios in real-world applications and serves as
a set of benchmark experiments for evaluating dialogue re-
sponse selection models.

Recently, deep neural networks have been widely adopted
for end-to-end response selection modeling. The prior work
generally employed two encoders to map the conversation
and the response into vector representations, and then de-
signed a classifier to measure the relation between these
two representations. An intuitive design is to encode two
sequences separately via recurrent neural networks (RNNs)
and then compute a score between the last hidden state
of two RNNs (Feng et al. 2015; Mueller and Thyagara-
jan 2016; Lowe et al. 2015). The MV-LSTM (Wan et al.
2015) improved the design by deriving a similarity ma-
trix between outputs of RNNs, and then used max-pooling
and multi-layer perceptron (MLPs) to aggregate the simi-
larity scores. To better utilize the interactive information,
other approaches employed the attention mechanism (Bah-
danau, Cho, and Bengio 2014) to facilitate the encoding pro-
cess (Tan et al. 2015; Rocktédschel et al. 2016; Wang, Liu,
and Zhao 2016; Santos et al. 2016; Shen, Yang, and Deng
2017; Tay, Tuan, and Hui 2018).

Motivated by the prior work that effectively utilized at-
tention mechanisms in diverse ways, this paper proposes
a novel framework for dialogue response selection, called
recurrent attention pooling networks (RAP-Net). The pro-
posed model consists of (1) multi-cast attention network
(MCAN) (Tay, Tuan, and Hui 2018) for extracting features
from input words, (2) feature-fusion layer for integrating
domain-specific knowledge-grounded features and informa-
tion from the MCAN layer, and (3) a proposed dynamic
pooling recurrent layer for extracting sentence-level infor-
mation by pooling dynamically based on utterance bound-
aries. The proposed model is shown to be effective for differ-
ent datasets (Ubuntu, Advising) and different settings (sub-
task 1, 3, 4) in the DSTC7 experiments. Furthermore, the
framework can also generalize to other retrieval-based tasks.

Task Description

In the response selection challenge, given a partial con-
versation and a set of response candidates, the system
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Figure 1: The architecture of the whole proposed model.
(A) is the word embedding of utterances (light green and
light blue color denotes words spoken by different speak-
ers) and candidate (light red color). (B) is the MCAN. (C)
Word embeddings along with extra features, which include
knowledge grounded features (light orange color) and fea-
tures extracted by the MCAN (light yellow color). (D) is the
first bi-directional LSTM layer. (E) is the dynamically pool-
ing layer. Note that LSTM outputs are grouped according to
utterances. (F) is the second bi-directional LSTM layer.

Max Pooling

is required to select one response from the candidates
set. A partial conversation consists of [ utterances: U :
{uy,u2, -+ ,u;}, an utterance is a sequence of words.
Each speaker participated in the conversation is given a
special identifier, say <speakerl>, <speaker2>, and
the special identifier is prepended to the utterances which
speaker speaks. So the ¢th utterance is denoted as u;
wlUm} A candidate set consists of k
candidates X : {z1,22, - ,2x}. And each candidate is a
sequence of words 2 : {w?y, w3y, -+, w},, }. For some
datasets, some word features grounded to specific domain
knowledge are also available. The knowledge-grounded fea-
tures of a word w are denote as F'(w). Among the candi-
dates, there would be either some correct responses or none.
The labels indicating if the candidate are correct answers are
denotedas Y : {y1,y2, - , Yk}

v o, U ,.U
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RAP-Net: Recurrent Attention Pooling
Networks

In this paper, we propose a novel framework for dialogue
response selection illustrated in Figure 1, and the four-step
pipeline is described as follows.

Multi-Cast Attention Network (MCAN)

First, the multi-cast attention network (MCAN) (Tay, Tuan,
and Hui 2018) is applied to extract extra word features with
various attention mechanisms on two word sequences. Here
we concatenate context utterances d = [uq, ug, - , U] as
the first sequence, while ¢ = x; as the sequence for the jth
candidate. For each word w in either d or g, we pass the
word representation into a highway layer H (Srivastava, Gr-
eff, and Schmidhuber 2015) to obtain a new representation

w':

w' = H(w) = o(Wyw) © ReLU(W,w) +

where Wy, W), are parameters to learn.

Before applying any attention operation, every word will
by be transformed with the highway layer, the attention
mechanisms include:

Intra-attention for a sequence d, a similarity matrix S is
calculated as

/T ’
S,‘,yj =w,; ij,

where w; and w; are i-th and j-th word of d respectively, and
M is a parameter to learn. For w;, the attention are then used
to weighted sum over contexts to form a new representation:
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where the weights are computed by performing softmax op-
eration over columns of the similarity matrix S, and the
intra-attention results for ¢ are calculated similarly.

Inter-attention a similarity matrix .S is calculated as

T ’
Sij=w g, Muw'y;,

where w’ a,; and wq ; are i-th and j-th word of d and g respec-
tively. The attention results are calculated differently for dif-
ferent pooling mechanisms (M is not shared across different
pooling mechanisms), as illustrated in Figure2 and Figure3:

e max-pooling: the attention results are calculated as

)t

)N g ifweq
softmax(max;.y, (S))d

v ifwed

, _ [softmax(max.q (S
maxr ~

e mean-pooling: the attention results are calculated as

g  ifwegq

, softmax(mean,; (S
w = .
ifwed

)
mean | softmax(mean,q, (9))d
e alignment-pooling: the attention results are calculated as

exp(s; J)
P {Z 5, exp (T ¥

align — exp(si,j /
2 z:kexp(skd>1”qu

ifw=wgy;
w .
ifw=wq;

(1 = a(Wyw)) ©
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Figure 2: Illustrator of inter-attention with mean and max
pooling. The brown and violet color arrows are column-wise
max and mean operation respectively. The output vectors
are the summation of utterances word embeddings weighted
by the mean and max values. The dotted lines at the top
of the figure denote that the word embeddings (green and
blue rounded rectangles) are weighted by the values (blue
circles). Weighted summation of the candidate word vectors
(pink round corner rectangles) is omitted for simplicity here.
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Figure 3: Illustration of inter-attention with alignment pool-
ing. The red arrows implies summation of the candidates
(pink round corner rectangles) weighted by the value of the
column.

Finally, we can have a feature vector of twelve scalar fea-
tures by interacting w’ with other features produced by at-
tention approaches described above:

fmean(W') = [Wilwswiignl;  Walwyg, —w'l;
Walwign © w'); Walt'; whpal;
Ws[Wipirq — w'l; - We[wiym © w';
Wrlw'swheanls  WslWhean — w'l;
Wolwhean @ w'l; - Wiglw's wh,g,)
Wit [Whae = w'ls - Wiz[whee © w'];]

where W, are compression matrices that map a vector into a
scalar and are parameters to learn.

Word Feature Augmentation

Secondly, each word w is augmented by concatenating the
domain specific knowledge-grounded features and features
extracted by MCAN after the word embeddings. The se-
quences of words with extra features in the dialogue contexts
and the candidates are denoted as

W= [w;F(w)7 fmcan(w)]a

where F'(w) is a vector about knowledge-grounded features
as specified in the task description section.

Dynamic Pooling Recurrent Networks

To encode contextual information, a dynamic pooling re-
current network is proposed, which contains two layers
of recurrent units and one dynamic pooling layer between
the two recurrent layers. In our model, a bi-directional
LSTM is employed (Hochreiter and Schmidhuber 1997;
Schuster and Paliwal 1997), which focuses on encoding the
utterance-level information as hierarchical recurrent neural
networks (HierRNN) does (Serban et al. 2016). The ith se-
quence (1 =1,2,--- ,1)is encoded as

— -
h%taﬁlt - LSTM ( 1t 1 h’%,t—U?Z{t)’

hzlta fST ( zt+1v<ﬁ},t+17%},t)v

where h and c are the hidden states and cell states respec-
tively. Different from HierRNN, which encodes each utter-
ance separately, the first layer of Dynamic Pooling LSTM
Networks encodes utterances by concatenating the utter-
ances as a single sequence. Therefore, the initial LSTM hid-
den state of an utterance is the last hidden state from the
encoded previous sequence:

1 —)1 1 —1
hzO? 1t*h’z 1,n;» ci—l,ni

_ 1
h 7,0 C it hiJrl,ni? c i+1,n;
In the second part of the dynamic pooling recurrent net-
work, the dynamic pooling layer is used to generate one vec-
tor representation hl for each utterance u; by pooling dy-

namically based on the utterance length n; over the encoded
hidden states from the first bidirectional recurrent layer:

. -« -« -«
ht=max([hi1; hitl,[hi2, hizlso s [Ring hin),s

where max(.) is the operation of max pooling of the vec-
tors over dimensions. Finally, there is another bi-directional
LSTM layer, which encodes utterance-level representations

W2, @2 = LSTM2(A!, h2 |, ¢ )),

h2H LSTM2 (!, 12 1, ¢F4),

and the last LSTM cell state is used as the dialogue-level
representation:



Candidate Selection

Each candidate x; is encoded by the first LSTM layer in the
Dynamic Pooling LSTM:

T e b
? = LSTMI( J t—1> hjytfla 7j,t)7
o, = LSTM

and the last LSTM cell state is used as the representation of
the candidate:

Jt’

%
T T x
h] t H@ g1y P51, T

-
Ty = [C?,mj; C;l]'

Then the probability of the candidate x; being the correct
response y; is calculated as

plx;) = o(Hy(Ha([r%; 150 @ r 50 = r]))),
where Hp, Hy are highway layers (Srivastava, Greff, and
Schmidhuber 2015) with ReLLU activation. The binary cross
entropy function is utilized as the objective:

L(U,X,Y)

Zyglogp () + (1 = y;) log(1 — p(x;)).

Experiments

To evaluate the performance of the proposed RAP-Net,
we conduct experiments on the two datasets provided by
DSTC7-Trackl, and compare our results with two baseline
systems.

Dataset

DSTC7-Trackl contains two goal-oriented dialogue datasets
— 1) Ubuntu data and 2) Advising data. There are five sub-
tasks in this challenge, where this paper focuses on the sub-
task 1, 3 and 4, because the same model architecture can be
applied to these subtasks. Here we briefly describe the set-
tings for each subtask:

o Subtask 1: There are 100 response candidates for each di-
alogue, and only one is correct.

e Subtask 3: There are 100 response candidates for each di-
alogue. The number of correct responses is between 1 and
5. Multiple correct responses are generated using para-
phrases.

e Subtask 4: There are 100 response candidates for each di-
alogue, and an additional candidate no answer should also
be considered. The number of correct responses is either
Oorl.

Baseline Systems

e Dual LSTM encoder (Lowe et al. 2015): uses two
LSTMs with tied weights to encode the context d =
u1,us, - -+ ,u; and the response x into fixed-length rep-
resentations c, r, respectively. The final hidden state of
LSTM is used to represent an input word sequence. The
probability of z being the next utterance of c is then cal-
culated as

p=o(c' Mr+b),

where the matrix M and bias b are learned parameters.

e HierRNN (Serban et al. 2016): has a similar structure as
the dual LSTM encoder, but uses two LSTMs to encode
context hierarchically. Each utterance in the dialogue con-
text is encoded separately by an utterance-level LSTM
LSTM,. The encoded representations are then fed into
a conversation-level LSTM LST M, to produce the con-
text representation c. A response x is encoded by LST M,
into response representation r. The prediction is calcu-
lated similarly as the dual LSTM encoder above.

Experimental Details

We use pre-trained 300-dimensional word embeddings via
fasttext (Mikolov et al. 2018) to initialize the embed-
ding matrix and fix it during training. The word embeddings
of out-of-vocabulary (OOV) are initialized randomly. In the
advising dataset, the suggested courses Cyyggesieqd and the
prior courses Cprior Of the student are given along with a
conversation. Therefore, to explicitly utilize this knowledge
in our model, we extract two features for each word and
then concatenate them as the knowledge-grounded features,
F(w):

1 ifwe Csuggested

A = {|

1 ifw € Cprior
0 otherwise.

otherwise.
Fy(w) =

F(w) = [Fi(w); F>(w)]

Note that there is no additional knowledge provided for the
Ubuntu dataset except for the subtask 5. Therefore, only
Smean(w) is added to the word representations.

We use adam as our optimizer to minimize the training
loss (Kingma and Ba 2014). The hidden layer size of LSTM
is 128. The initial learning rate varies from 0.001 to 0.0001,
which is a hyperparameter for tuning. We train our models
for 10 epochs and select the best-performing model based
on the development set.

Following the official evaluation metrics, we use recall at
10 (R@10) and mean reciprocal rank (MRR) to report the
performance of our models. The final score is the average of
two metrics.

Results

To explicitly validate the effectiveness of the proposed
model and auxiliary features, we compare the performance
between our model and the baseline systems. Table 1 shows
the empirical results on the development set of the subtask
1.

Dynamic pooling LSTM Our dynamic pooling LSTM
outperforms HierRNN in terms of all metrics on both
datasets, especially on the advising dataset. The results show
that concatenating utterances into a single sequence can ben-
efit conversation encoding.

MCAN feature Adding f,,cqn(w) as an auxiliary feature
(row (d)) further improves the performance by a large mar-



Ubuntu Advising
R@10 MRR Average | R@10 MRR Average
Baseline  (a) DualRNN 62.5 36.23  49.39 258 1181 18.81
(b) HierRNN 652 37.87 51.56 39.2  18.68  28.94
RAP-Net (c) DP-LSTM 66.3 41.26  53.81 49.0 21.99 35.49
(d) DP-LSTM+ f1can 76.7 56.18 66.45 51.0 25.80 3840
(e) DP-LSTM+F(w) - - - 729  38.07 55.50
(f) DP-LSTM+ f 1 can+F(w) - - - 76.6 4284 59.72
Table 1: Results on subtask 1 development sets (%).
Task Ubuntu Advising Case 1 Advising Case 2
R@10 MRR Avg Rank | R@1I0 MRR Avg | R@10 MRR Avg Rank
Subtask 1 81 64.86 72.93 3 804 49.14 o64.77 61 30.61 45.81 2
Subtask 3 - - - - 684  39.34 5387 | 604 31.71 46.05 3
Subtask 4 | 84.1  63.17 73.63 2 842 4531 6475 | 640 30.70 4735 3

Table 2: The official testing results of our submitted systems. Two different test sets for advising are provided. Note that in
subtask 3, only advising dataset is provided for training and evaluating. The rankings of this challenge are based on the average

Score.

gin on the ubuntu dataset, yielding a 23.5% relative improve-
ment. It demonstrates that the MCAN feature f,,cqn (w) also
helps our model achieve slightly better results on the advis-
ing dataset.

Knowledge-grounded feature For advising dataset, we
extract a 2-dimensional knowledge-grounded feature F'(w)
to enhance word representations. As shown in Table 1,
adding F(w) (row (e)) yields a 56.4% relative improve-
ment, which is significantly greater than the improvement of
adding fycan(w). The results show the difficulty of solving
this task on the advising dataset without any prior knowl-
edge. The effectiveness of our knowledge-grounded feature
F(w) shows that identifying course names is crucial for this
dataset. The best model on the advising dataset is the dy-
namic pooling LSTM with both auxiliary features added to
the input word representations (row (f)), achieving about
66% and 60% average performance for ubuntu and advising
datasets respectively.

Official Evaluation

In the DSTC7 challenge, the proposed systems are submitted
for official evalution. For each subtask, our submitted sys-
tem consists of several models with different hyperparame-
ters and auxiliary features. Using different features gives our
model multiple perspectives to the data and hence improves
the prediction accuracy. The official evaluation results are
shown in Table 2, and Table 3 shows the final rankings of
our results for all subtasks. Note that the model for the sub-
task 5 is the single model, which performs worse than the
ensemble one as the subtask 1. In the official evaluation, the
superior performance and the achieved rankings across dif-
ferent subtasks significantly demonstrate the effectiveness of
the proposed model. Considering that our rankings are either

Ubuntu  Advising
Subtask 1 3 2
Subtask 3 - 3
Subtask 4 2 3
Subtask 5 6 4
Overall 4 3

Table 3: Official rankings of our systems on each subtask.
The overall ranking considers all subtasks.

Model | R@10 MRR  Average

DP-LSTM + fcan | 767  56.18  66.45
- inter-attention 69.4 4392  56.66
- intra-attention 763  55.86  66.08
- highway encoder | 75.8 5494  65.37
- dynamic pooling | 76.1  55.18  65.67

Table 4: Ablation results on Ubuntu development set (%).

2 or 3 among 20 teams, we argue that the proposed RAP-Net
can successfully estimate the relatedness between dialogues
and responses and generalize across different datasets.

Ablation Study

To further understand the contribution of each component,
we conduct an ablation test on the RAP-Net model. Table 4
shows the ablation results on the ubuntu subtask 1 devel-
opment set. We remove one component at each time and
evaluate the resulting model using R@10 and MRR. Note
that after removing dynamic pooling, the last hidden state of
an LSTM is used as the sequence-level representation. This
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Figure 4: Visualization of attention scores. We plot the attention scores fi,cqn Of two sequences from Ubuntu development set:
(a) A partial conversation and (b) The correct response corresponding to the conversation. The conversation is truncated to the
last two sentences due to width limitation. Darker color represents higher attention score. Note that each row is normalized

separately since the range of values varies for each dimension.

setting is equivalent to HierRNN with an additional feature
mcan-

The ablation results show that the co-attention is the most
crucial component to our model, because the average score
drops drastically by almost 0.1 if it is removed, demonstrat-
ing the importance of modeling the interaction between the
conversation and the response for this task. It is found that
removing each of them results in a reduction of roughly
0.01 in terms of the average score, so the highway encoder
and the dynamic pooling also slightly contribute to the im-
provement. Furthermore, the intra-attention benefits least to
performance, which is similar to the findings in the prior
work (Tay, Tuan, and Hui 2018).

Attention Analysis

As described in the previous section, the attention f,cqr 18
a key feature in our framework. To deeply investigate this
feature, we examine its numerical value to perform qualita-
tive analysis. An example of attention scores for each word
in a sequence is shown in Figure 4. It can be found that the
features extracted by mean-pooling, max-pooling and intra-
attention are always equal or close to zero with no obvious
pattern, so we only plot features extracted by alignment-
pooling for simplicity. The x-axis indicates the words in the
context or response, and the y-axis represents different com-
pression methods described in the MCAN section.

From Figure 4, we observe that the attention has the abil-
ity to model word overlapping between two sequences. For
example, the word breezy appears in both sequences, and
it has a relatively larger attention score. In addition to the
ability to model explicit word overlapping, MCAN can also
identify words that are relevant to the other sequence. Here

MCAN gives rhythmbox and ipod larger scores than other
words in the context, even though they do not appear in the
response. The reason is that words such as gtkpod and breezy
in the response are related to ipod, so the model correctly
identifies the words that are relevant in the context. Simi-
larly, the word gtkpod in the response obtains the largest at-
tention score, because it is the most relevant to the context.

The features extracted by multiplication and concatena-
tion shows similar patterns. However, the features extracted
by subtraction seems to be only activated by <speaker>
and <unk> tokens or other function words. The probable
reason is that this dimension assists the encoder to recognize
unimportant words. We should note that these observed pat-
terns are not consistent over different runs. Generally there
is at least one dimension that models word relevance across
sequences, and at least one dimension that recognizes unim-
portant words. The difference among compression methods
is not significant and requires further investigation.

Conclusion

This paper proposes a novel framework, recurrent attention
pooling networks (RAP-Net), which focuses on precisely
measuring the relations between dialogue contexts and the
responses for dialogue response selection. The DSTC7 ex-
periments are conducted to evaluate the proposed model,
where multi-cast attention network (MCAN) and our pro-
posed knowledge-grounded features are proved to be useful,
and each attention and pooling mechanism is demonstrated
to be effective. In sum, RAP-Net is capable of capturing the
salient information from dialogues and is good at selecting
a proper response for two different types of dialogue data.
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